摘要:
A method of setting a work function of a fully silicided semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a dielectric layer, a silicide layer on the dielectric layer that defines a metal-dielectric layer interface, and a polysilicon layer on the silicide layer), depositing a metal layer over the gate stack, annealing to induce a reaction between the polysilicon layer and the metal layer, and delivering a work function-setting dopant to the metal-dielectric layer interface by way of the reaction.
摘要:
Processes for synthesizing graphene films. Graphene films may be synthesized by heating a metal or a dielectric on a substrate to a temperature between 400° C. and 1,400° C. The metal or dielectric is exposed to an organic compound thereby growing graphene from the organic compound on the metal or dielectric. The metal or dielectric is later cooled to room temperature. As a result of the above process, standalone graphene films may be synthesized with properties equivalent to exfoliated graphene from natural graphite that is scalable to size far greater than that available on silicon carbide, single crystal silicon substrates or from natural graphite.
摘要:
A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.
摘要:
The invention provides methods and compositions for treatment of bacterial infections. The composition may be a combination of factors, which include A0, A1, B1, B2, C0, C1, isoB0, and MAG, in the presence of low level solvent. Methods of the invention include administration of dalbavancin formulations for treatment of a bacterial infection, in particular a Gram-positive bacterial infection of skin and soft tissue. Dosing regimens include multiple dose administration of dalbavancin, which often remains at therapeutic levels in the bloodstream for at least one week, providing prolonged therapeutic action against a bacterial infection. Dosing regimens for renal patients are also included.
摘要:
A method for improving high-κ gate dielectric film (104) properties. The high-κ film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.
摘要:
Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
摘要:
In accordance with the present teachings, methods of making dual doped polysilicon gates are provided. The method can include providing a semiconductor structure including a plurality of polysilicon gates having a first critical dimension disposed over a dielectric layer and planarizing the plurality of polysilicon gates with a spin-on material to form a plurality of planarized polysilicon gates. The method can further include doping an exposed first region with p-type dopants to form a plurality of p-doped planarized polysilicon gates and doping an exposed second region with n-type dopants to form a plurality of n-doped planarized polysilicon gates. The method can also include removing the spin-on material to form a plurality of p-doped polysilicon gates and a plurality of n-doped polysilicon gates, wherein critical dimension of each of the plurality of n-doped polysilicon gates and the plurality of p-doped polysilicon gates are substantially similar to the first critical dimension.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An oxide layer is formed in core and I/O regions of a semiconductor device (506). The oxide layer is removed (508) from the core region of the device. A high-k dielectric layer is formed (510) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions of the core and I/O regions. A silicon nitride layer is grown (516) within PMOS regions of the core and I/O regions by a low temperature thermal process. Subsequently, an oxidation process is performed (518) that oxidizes the silicon nitride into silicon oxynitride.
摘要:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
摘要:
A MOSFET structure with high-k gate dielectric layer and silicon or metal gates, amorphizing treatment of the high-k gate dielectric layer as with a plasma or ion implantation.