摘要:
A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.
摘要:
A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.
摘要:
A method of processing a substrate is disclosed. The method includes depositing a dielectric layer having a metal oxide on a substrate. A portion of the dielectric layer is removed to form a dielectric structure, thereby exposing a surface of the substrate. For example, the dielectric layer may be patterned using standard photolithographic techniques and etching. An oxide layer is then formed on the exposed surface of the substrate. The oxide layer may be formed using ozone that is generated using ultraviolet radiation. After the oxide layer is formed, it is removed using an etching process.
摘要:
An embodiment of the instant invention is a method of forming a electrically conductive structure insulatively disposed from a second structure, the method comprising: providing the second structure; forming the electrically conductive structure of a material (step 118 of FIG. 1) that remains substantially conductive after it is oxidized; forming an electrically insulative layer (step 116 of FIG. 1) between the second structure and the conductive structure; and oxidizing the conductive structure by subjecting it to an ozone containing atmosphere for a duration of time and at a first temperature.
摘要:
A method for forming a thermal silicon nitride on a semiconductor substrate is disclosed. This method allows formation of thermal silicon nitride that is thick enough for a FET gate dielectric, but has a low thermal budget.
摘要:
Channel-hot-carrier reliability can be improved by deuterium passivation of the gate interface. By performing high temperature steps (above 300 degrees Celsius) in a deuterium-containing ambient, harmful depletion of deuterium due to diffusion away from the gate interface is avoided.
摘要:
A free-standing cremation memorial for holding cremated remains has a plurality of chambers in a vertical portion of the structure as well as a number of chambers in the base unit. A base member prefabricated of aluminum framework with at least about 10 underground chambers is provided. An upright framework supported on said base in which a large number of niches is provided. A base member, which is supported on concrete footings, is a three-dimensional framework which provides support for the upright portion of the cremation memorial, which is also prefabricated framework.
摘要:
The present invention relates to micro-mechanical devices including actuators, motors and sensors with improved operating characteristics. A micro-mechanical device (10) comprising a DMD-type spatial light modulator with a getter (100) located within the package (52). The getter (100) is preferably specific to water, larger organic molecules, various gases, or other high surface energy substances. The getter is a non-evaporable getter (NEG) to permit the use of active metal getter systems without their evaporation on package surfaces.
摘要:
A resonant tunneling diode (400) made of a silicon quantum well (406) with silicon oxide tunneling barriers (404, 408). The tunneling barriers have openings (430) of size smaller than the electron wave packet spread to insure crystal alignment through the diode without affecting the tunneling barrier height, and the openings (430) have an irregular (nonperiodic) shape.
摘要:
CMOS and BiCMOS structures with a silicate-germanate gate dielectric on SiGe PMOS areas and Si NMOS areas plus HBTs with Si—SiGe emitter-base junctions.