Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
A method of providing aggregated MAC protocol data unit (AMPDU) duration control in a wireless communication device includes setting an AMPDU duration. Pass/fail statistics are collected for each MPDU of an AMPDU in a time window, W. A packet error rate (PER) difference is calculated between first and last sets of MPDUs for each AMPDU in the window. An average PER difference is calculated across all AMPDUs in the window. When the average PER difference is greater than a first threshold, then the AMPDU duration is decreased. When the difference is less than a second threshold, then the AMPDU duration is increased. When the difference is within the first and the second thresholds, then the method returns to the step of collecting for a next time window. The AMPDU duration can also be adjusted based on detected Doppler and line-of-sight transmissions.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
In a multiple-input, multiple-output (MIMO) system, a wireless node's receive chain demodulation function is enhanced to include phase tracking. VHT Long Training Fields (LTFs) embedded in a frame preamble are used for phase tracking. Single stream pilot tones are added during transmission of VHT-LTFs. A receiver estimates the channel using the pilot tones in a first set of LTFs. A second set of LTFs are used to estimate the phase of the pilot tones using the estimated channel. The phase estimation is continuously applied to other received data tones throughout the VHT-LTFs of data symbols. Phase errors due to PLL mismatches and phase noise are reduced at reception, leading to better signal to noise ratio for different levels of drift and frequency offset. Further, MIMO channel estimation is more accurate, improving the overall wireless network when the accurate MIMO channel estimation data participates in calibration and handshake between wireless nodes.
Abstract:
A method and apparatus for improving the accuracy of a round trip time (RTT) estimate between a first device and a second device are disclosed. The method involves calculating an acknowledgement correction factor and a unicast correction factor. These correction factors are used to compensate for symbol boundary time errors resulting from multipath effects.
Abstract:
A wireless device that operates in accordance with the IEEE 802.11 standard receives the preamble of a packet with the highest number of receive chains enabled, thereby obtaining the highest gain, detection sensitivity and range. The wireless device determines a signal-to-noise ratio (SNR) in response to two different short training fields (STFs) in the preamble. The wireless device also determines a modulation and coding scheme (MCS) and a number of spatial streams (Nss) used to transmit the received packet in response to a signal field of the preamble. The wireless device uses these determined parameters to identify a minimum number of the receive chains required to reliably receive the packet. The wireless device uses only the identified minimum number of receive chains to perform channel estimation and receive the data portion of the packet.
Abstract:
A wake-up radio is configured to scan for transmissions while the radio receiver is in sleep mode. The wake-up radio detects incoming RF transmissions intended for the radio receiver by analyzing data frame characteristics in an incoming RF transmission. The data frame characteristics may contain a signature code that is unique to the radio receiver. The signature code may be based on the time duration of a sequence of orthogonal frequency division multiplex (OFDM) symbols received in a clear to send to self (CTS2S) transmission or a time duration of short interframe spaces (SIFS) used to transmit the data frames.
Abstract:
A TOA positioning system can be implemented that employs a calculated initial location of a wireless network device. For each of a plurality of reference wireless network devices, a distance between the wireless network device and the reference wireless network device is determined based, at least in part, on a round trip transit time between the wireless network device and the reference wireless network device. An initial location of the wireless network device can be calculated based, at least in part, on a location of each of the plurality of reference wireless network devices. A location of the wireless network device can be estimated based, at least in part, on the calculated initial location, the distance to each of the reference wireless network devices, and an initial distance calibration constant.
Abstract:
Aspects of determining a geographical state of a target through a user device are provided. One method includes identifying at least one target associated with a target device configured to provide position data in a standard reference frame along with corresponding time values, and sending a request for access to geographical state information for at least one target. The method may further include receiving geographical state information associated with the at least one target, and generating a visual identifier of the at least one target based on the geographical state information. The visual identifier may be associated with data captured by an imaging sensor which is functionally coupled to the user device. Systems and apparatuses for determining a geographical state of a target through a user device are further presented.
Abstract:
A method of providing rate adaptation in a multi-user wireless communication system including single-user beamforming (SU-BF) and multi-user multiple-input multiple-output (MU-MIMO) is described. In this method, a master rate, which is a modulation and coding scheme (MCS) for the SU-BF, is determined. An MCS for each transmit mode is derived from the master rate using a rate mapping. Using the results from the mapping, the master rate, instead of the MCS for each transmit mode, is tracked. In one embodiment, a mapping calibration is periodically performed.