Abstract:
A data transmission method and an apparatus to communicate data on multiple carriers in the mobile communication system are provided. A random access method of a terminal in a mobile communication system including primary and secondary cells operating on multiple carriers according to the present invention includes communicating data after random access in the primary cell, receiving, when the random access is triggered in the secondary cell, information for use in the secondary cell random access from the primary cell, transmitting a preamble in the secondary cell based on the received information, monitoring the primary cell to receive a Random Access Response for the secondary cell, and applying, when the Random Access Response for the secondary cell is received, the information carried in the Random Access Response to the secondary cell in which the preamble has been transmitted.
Abstract:
A data communication method of a terminal of a mobile communication system is provided. The data communication method includes transmitting a first message including location-related information of the terminal to a base station, receiving a second message including a Wireless Local Area Network (WLAN) Access Point (AP) list corresponding to the location-related information of the terminal, and scanning, if the WLAN AP list includes at least one WLAN AP, for WLAN APs included in the WLAN AP list.
Abstract:
An in-device coexistence interference report control method of a network for terminal to inform the network of interference among heterogeneous radio communication modules coexisting in the terminal is provided. The method includes determining, at a terminal when a terminal capability enquiry message is received from a base station, whether the base station supports an In-Device Coexistence (IDC) interference report, transmitting, when the IDC interference report is supported, a terminal capacity information message to the base station, receiving a Radio Resource Control (RRC) connection reconfiguration message including information on whether terminal's IDC interference indicator transmission is permitted from the base station; and transmitting an RRC connection reconfiguration complete message to the base station in response to the RRC connection reconfiguration message. The in-device coexistence interference indication control method is advantageous in preventing the UE from transmitting useless in-device coexistence interference indication messages, resulting in reduction of unnecessary signaling.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method and apparatus for paging transmission and reception, SI window determination and UL carrier selection.
Abstract:
A method performed by a user equipment (UE) in a wireless communication system is provided. The method comprises receiving configuration information on a multicast broadcast service (MBS), and receiving, based on the configuration information, MBS data in a radio resource control (RRC)_Connected mode. The MBS data is transmitted to plurality of UEs including the UE for multicast transmission, or to the UE for unicast transmission. A Hybrid Automatic Repeat and request (HARQ) retransmission is applied to a transmission of the MBS data.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure relates to a method and an apparatus for performing fallback when handover fails in a case where efficient handover without interruption of transmission or reception of data during handover is performed.
Abstract:
The present disclosure relates to a communication technique for merging IoT technology with a 5G communication system for supporting higher data transmission rates than 4G systems, and a system therefor. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail business, security and safety-related services, etc.) on the basis of 5G communication technology and IoT-related technology. In addition, the present disclosure relates to a method for adding or changing a cell, and a device for performing same.
Abstract:
According to an aspect of the disclosure, a method of performing a conditional handover by a vehicle-to-everything (V2X) user equipment (UE) may include: transmitting a cell measurement report to a serving cell; receiving conditional handover configuration information from the serving cell; determining whether to perform a handover, based on the conditional handover configuration information; and when it is determined to perform the handover, performing random access to a target cell.
Abstract:
Provided is an operating method of a user equipment (UE) in a wireless communication system, the operating method including: receiving, from a base station, a radio resource control (RRC) message including packet data convergence protocol (PDCP) layer configuration information for each data radio bearer (DRB); and when a PDCP entity is configured to be reestablished for each DRB and the PDCP layer configuration information includes an indicator indicating to continuously use header compression protocol configuration information, indicating to a lower layer entity that the header compression protocol configuration information is configured to be continuously used.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An embodiment of the present invention relates to a method and a device for processing a ciphered UDC header in a next-generation mobile communication system.