Abstract:
A sync signal generator for a capacitive sensor includes a charge amplifier having an input for coupling to an inactive receive line in the capacitive sensor, a first comparator having a first input for receiving a first threshold voltage, a second input coupled to an output of the charge amplifier, and an output for providing a first sync signal, and a second comparator having a first input for receiving a second threshold voltage, a second input coupled to the output of the charge amplifier, and an output for providing a second sync signal. The charge amplifier includes an operational amplifier having a feedback circuit including a capacitor and a switch. The first threshold voltage is provided by a first digital-to-analog converter, and the second threshold voltage is provided by a second digital-to-analog converter.
Abstract:
A user controlled device, movable into a plurality of positions of a three-dimensional space, includes a MEMS acceleration sensor to detect 3D movements of the user controlled device. The device, such as a mouse, sends control signals correlated to the detected positions to an electrical appliance, such as a computer system. A microcontroller processes the output signals of the MEMS acceleration sensor to generate the control signals, such as screen pointer position signals and “clicking” functions.
Abstract:
A frame level noise estimate for an image can be determined. An image processor includes a high pass filter unit configured to perform high-pass spatial filtering of image data for first and second frames to produce high-pass spatially filtered information for the first frame and the second frame. A cumulative histogram generator is configured to analyze the high-pass spatially filtered information for the first frame and the second frame to produce a first cumulative histogram for the first frame and a second cumulative histogram for the second frame. A comparator is configured to determine a difference value between the first and second cumulative histograms. A mapping unit is configured to determine an estimated noise value based on the difference value.
Abstract:
In an embodiment, a channel estimator includes first and second stages. The first stage is configurable to generate an observation scalar for a communication path of a communication channel, and the second stage is configurable to generate channel-estimation coefficients in response to the first observation scalar. For example, such a channel estimator may use a recursive algorithm, such as a VSSO Kalman algorithm, to estimate the response of a channel over which propagates an OFDM signal that suffers from ICI due to Doppler spread. Such a channel estimator may estimate the channel response more accurately, more efficiently, with a less-complex algorithm, and with less-complex software or circuitry, than conventional channel estimators. Furthermore, such a channel estimator may be able to dynamically account for changes in the number of communication paths that compose the channel, changes in the delays of these paths, and changes in the signal-energy levels of these paths.
Abstract:
An automatic frequency selection circuit includes a base filter for receiving a video input, a peaking filter for receiving the video input, a first energy computation unit coupled to an output of the base filter, a second energy computation unit coupled to an output of the peaking filter, an automatic frequency control unit to compare relative measured energies of the first and second energy computation units and to output a temporarily stable selected frequency for a targeted attenuation, and a frame delay feedback unit for receiving the temporarily stable selected frequency coupled to the peaking filter.
Abstract:
The present invention provides an audio streaming system and method for transmitting audio signals with high quality. The advantages of the present invention include easy implementation, computational efficiency, and provision of better audio quality. More particularly, the present invention provides a Multi-band Time Expansion algorithm for lost packet concealment. The Multi-band Time Expansion algorithm detects the number of continuously lost packets in an audio input signal and the correctly received packets on either side of the lost packets. Then the Multi-band Time Expansion algorithm time-expands the correctly received packets that may be from either one side or both sides of the lost packets, wherein the correctly received packets are stretched to cover the length of the lost packets. Finally the Multi-band Time Expansion algorithm overlap-adds the stretched packets so that the lost packets are concealed.
Abstract:
An embodiment of a disk drive power system is described. The system is operable such that during power interruption, the system taps electric power by rectifying the back-EMF generated across each winding of a DC motor and supplying power to a voice-coil motor to park a read/write head safely away from an associated magnetic disk surface.
Abstract:
Fan-out wafer level packaging includes an integrated circuit having a top surface, a bottom surface and a bond pad defined on the top surface, and a substrate having a cavity. An adhesive layer is positioned between a top surface of the cavity and the bottom surface of the integrated circuit, and a bump is positioned proximate a top surface of the fan-out wafer level packaging, the bump spaced apart from the integrated circuit. A redistribution layer is configured to electrically couple the bond pad of the integrated circuit to the bump.
Abstract:
A system and method of reusing information in low power scalable hybrid audio encoders. The system and method provides a transform coder and parameterization of high frequency spectrum (SBR).
Abstract:
Updating content of e-paper ESL device(s) otherwise in a powered-down state is disclosed. One or more e-paper ESL devices need only be turned on when it is desired or needed to change and update content displayed. Transmission of a wireless energy burst having a magnetic resonating power coupling characteristic powers up the e-paper ESL device from a powered-down to powered-up state. The content of the e-paper ESL device can then be changed in accordance with data and instructions transmitted with the wireless energy burst.