Abstract:
The present invention relates generally to a process of producing transgenic plants and more particularly transgenic oil palm plants carrying exogenous genetic material which confers on said plants or cells of said plants particular phenotypic traits. The present invention further provides plant parts, reproductive material and plant products from the transgenic plants. The present invention particularly provides transgenic plants and even more particularly transgenic oil plants having beneficial and useful phenotypic characteristics not present at least to the same extent in non-transgenic plants of the same species. The present invention is further directed to oil, and particularly palm oil, having beneficial and desirable characteristics, produced by the transgenic plants made in accordance with the present invention.
Abstract:
The present invention relates to a method for excising a nucleic acid sequence from the genome of a plant or a plant cell. This method is based on the steps of transforming a plant cell with a construct encoding a DNA double strand break inducing enzyme (DSBI), generating a transgenic plant line, performing a transient assay to analyze the functionality of the transgenic enzyme, crossing the plant line with a line containing a nucleic acid sequence to be excised and performing an immature embryo conversion or a tissue culture regeneration through callus formation. The method can also be reversed, which means that a plant cell is transformed with a construct encoding a nucleic acid sequence to be excised, and the crossing is performed with a plant line containing a DSBI. As an alternative to the crossing step, a re-transformation of a transgenic plant line with a second construct can also be performed. The invention is also directed to a plant obtained by this method, or progeny, propagation material, part, tissue, cell or cell culture, derived from such a plant. Finally, the invention relates to the use of a plant or progeny, propagation material, part, tissue, cell or cell culture, derived from this method, as aliment, fodder or seeds or for the production of pharmaceuticals or chemicals.
Abstract:
The subject invention provides simple and consistent methods to break suspension cell aggregates to single cells with intact primary cell walls. The subject invention relates in part to cell separation of suspension cell aggregates cultured in medium containing pectin-degrading enzymes or tubulin de-polymerizing compounds including colchicine. The subject invention also relates to novel uses of compounds for such purposes. Another aspect of the subject invention relates to transformation of the subject, isolated cells. Such processes simplify and integrate single-cell-based transformation and selection processes into transgenic and transplastomic event-generation work processes. The subject invention also removes technical constraints and produces marker-free and uniformly expressing transgenic lines in a high throughput fashion to support various needs of animal health, biopharma, and trait and crop protection platforms.
Abstract:
This invention describes a process for gene expression in plants utilizing translational vectors. Said translational vectors cause a gene of interest to be stably integrated into a transcriptionally active host genomic DNA such that the transcription of the gene of interest is controlled by a promoter of the host plant. Said translational vectors are preferably based on internal ribosome entry site (IRES) elements that are of plant origin.
Abstract:
Methods and compositions for modulating plant development are provided. Nucleotide sequences and amino acid sequences encoding Ovule Development Protein 2 (ODP2) proteins are provided. The sequences can be used in a variety of methods including modulating development, developmental pathways, altering oil content in a plant, increasing transformation efficiencies, modulating stress tolerance, and modulating the regenerative capacity of a plant. Transformed plants, plant cells, tissues, and seed are also provided.
Abstract translation:提供了调节植物发育的方法和组合物。 提供编码Ovule Development Protein 2(ODP2)蛋白的核苷酸序列和氨基酸序列。 这些序列可以用于各种方法,包括调节发育,发育途径,改变植物中的油含量,提高转化效率,调节胁迫耐受性和调节植物的再生能力。 还提供了转化的植物,植物细胞,组织和种子。
Abstract:
Artificial plant minichromosomes comprising a functional centromere which specifically bind centromeric protein C (CENPC) and methods for making such minichromosomes are described.
Abstract:
The present invention relates to methods and compositions for transforming soybean, corn, cotton, or canola explants using spectinomycin as a selective agent for transformation of the explants. The method may further comprise treatment of the explants with cytokinin during the transformation and regeneration process.
Abstract:
The present invention is directed to plants that display an improved oil quantity phenotype or an improved meal quality phenotype due to altered expression of an HIO nucleic acid. The invention is further directed to methods of generating plants with an improved oil quantity phenotype or improved meal quality phenotype.
Abstract:
The present disclosure provides methods for the transformation of soybean cells or tissue and regeneration of the soybean cells or tissue into transformed plants. The disclosed methods utilize an explant prepared from an immature soybean seedling which can be induced directly to form shoots that give rise to transgenic plants via organogenesis. The disclosed methods do not require germination and are rapid and efficient.