摘要:
Disclosed herein are methods and compositions for targeted integration of an exogenous sequence into a predetermined target site in a plant genome.
摘要:
The subject invention provides simple and consistent methods to break suspension cell aggregates to single cells with intact primary cell walls. The subject invention relates in part to cell separation of suspension cell aggregates cultured in medium containing pectin-degrading enzymes or tubulin de-polymerizing compounds including colchicine. The subject invention also relates to novel uses of compounds for such purposes. Another aspect of the subject invention relates to transformation of the subject, isolated cells. Such processes simplify and integrate single-cell-based transformation and selection processes into transgenic and transplastomic event-generation work processes. The subject invention also removes technical constraints and produces marker-free and uniformly expressing transgenic lines in a high throughput fashion to support various needs of animal health, biopharma, and trait and crop protection platforms.
摘要:
The subject invention provides simple and consistent methods to break suspension cell aggregates to single cells with intact primary cell walls. The subject invention relates in part to cell separation of suspension cell aggregates cultured in medium containing pectin-degrading enzymes or tubulin de-polymerizing compounds including colchicine. The subject invention also relates to novel uses of compounds for such purposes. Another aspect of the subject invention relates to transformation of the subject, isolated cells. Such processes simplify and integrate single-cell-based transformation and selection processes into transgenic and transplastomic event-generation work processes. The subject invention also removes technical constraints and produces marker-free and uniformly expressing transgenic lines in a high throughput fashion to support various needs of animal health, biopharma, and trait and crop protection platforms.
摘要:
Disclosed herein are methods and compositions for targeted integration and/or targeted excision of one or more sequences into a cell, for example, for expression of one or more polypeptides of interest.
摘要:
Disclosed herein are methods and compositions for targeted integration of an exogenous sequence into a predetermined target site in a plant genome.
摘要:
Disclosed herein is an activation tagging construct for maize, resulting tagged populations and plants. In one example, an activation tagging DNA construct includes a coding sequence for a transposase, a detectable reporter (such as anthocyanin regulatory genes B-Peru and C1) and a non-autonomous transposable T-DNA cassette. For example, the transposable T-DNA cassette is inserted into the detectable reporter encoding region such that the B-Peru and C1 genes express anthocyanins in a cell containing the maize activation tagging DNA construct only upon excision of the transposable cassette. Methods of generating a tagged population of maize plants include transforming a maize plant cell or tissue with the disclosed constructs.
摘要:
A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
摘要:
Disclosed herein are methods and compositions for targeted integration and/or targeted excision of one or more sequences into a cell, for example, for expression of one or more polypeptides of interest.
摘要:
Identification of new enhancer sequence has significant utility in the plant functional genomics. The sugarcane bacilliform badnavirus (SCBV) transcriptional enhancer has been identified. This enhancer can be used to increase the rate of transcription from gene promoters and in activation tagging experiments. A ten-fold increase in transcription was observed when a 4× array of the SCBV enhancer was placed upstream of a truncated form of the maize alcohol dehydrogenase minimal promoter. Methods of using the SCBV transcriptional enhancer are described, as are chimeric transcription regulatory regions, constructs, cells, tissues, and organisms that comprise one or more copies of the enhancer.
摘要:
Identification of new enhancer sequence has significant utility in the plant functional genomics. The sugarcane bacilliform badnavirus (SCBV) transcriptional enhancer has been identified. This enhancer can be used to increase the rate of transcription from gene promoters and in activation tagging experiments. A ten-fold increase in transcription was observed when a 4× array of the SCBV enhancer was placed upstream of a truncated form of the maize alcohol dehydrogenase minimal promoter. Methods of using the SCBV transcriptional enhancer are described, as are chimeric transcription regulatory regions, constructs, cells, tissues, and organisms that comprise one or more copies of the enhancer.