Abstract:
A low NOx combustion method includes steps of injecting reactants into a combustion chamber. A primary reactant stream, including fuel and combustion air premix, is injected from a premix burner port into the combustion chamber. A staged fuel stream is injected into the combustion chamber from a staged fuel injector port adjacent to the premix burner port. A stream of recirculated flue gas is injected into the combustion chamber from a flue gas injector port that is adjacent to the premix burner port and adjacent to the staged fuel injector port. In this manner, the stream of recirculated flue gas is injected into the combustion chamber unmixed with the primary reactant stream and unmixed with the staged fuel stream.
Abstract:
In accordance with the flow distribution of combustion gas including an unburned portion, an after-air port (AAP) arranged downstream of the two-stage combustion burner can effectively reduce the unburned portion by dividing as appropriate so as to avoid interaction, and by mixing together, two types of after-air having functions of linearity and spreading. As the configuration of this AAP, a primary nozzle for supplying primary after-air and having a vertical height greater than the horizontal width is provided in the center in the opening of the AAP, a secondary nozzle for supplying secondary after-air is provided in the opening outside of the primary nozzle, and one or more secondary after-air guide vanes having a fixed or variable tilt angle relative to the after-air port center axis are provided at the outlet of the said secondary nozzle to deflect and supply the secondary after-air horizontally to the left or right.
Abstract:
A combustion system having a furnace defining a combustion chamber includes a first burner disposed at an upper elevation of the combustion chamber and a second burner and a third burner disposed at a lower elevation of the combustion chamber. A first duct extends vertically to convey therein a fuel flow of gas and pulverized fuel. A second duct branches from the first duct to the first burner to convey a first portion of the fuel flow, which is fuel lean, to define a fuel lean flow, wherein a second portion of the fuel flow passes through the first duct as a fuel rich flow. A third duct includes one end disposed longitudinally within the first duct. An impeller is disposed within the first duct upstream of the branching of the second duct and downstream of the one end of the third duct disposed in the first duct. The impeller includes a plurality of blades to direct outwardly the pulverized fuel of the fuel rich flow to provide a fuel reduced content flow passing through the second duct to the second burner, and a fuel concentrated content flow passing through first duct to the first burner.
Abstract:
The combustion controller controls the fuel and air that are supplied to the combustion furnace for burning substances, and addresses the aforementioned object by including: fuel supply unit for supplying fuel and air into the combustion furnace; air supply unit for supplying air into the combustion furnace, the air supply unit being disposed downstream of the fuel supply unit in the direction of flow of combustion air; concentration measuring unit for measuring the concentration of hydrogen sulfide of the combustion air by passing a measurement beam of light through the combustion air at a measurement position downstream of the fuel supply unit in the direction of flow of the combustion air; and control unit for controlling the amount of air supplied from the fuel supply unit based on a measurement result provided by the concentration measuring unit.
Abstract:
A tangentially-fired furnace for the burning of anthracite is disclosed. The furnace may contain a boiler with a chamber having four corners. Four burner groups located at the four corners may be configured to eject pulverized coal flow into the chamber for combustion, in order to form a single fireball substantially at the center of the chamber during combustion. Each burner group may contain a first burner which includes primary-air/rich-portion nozzles for ejecting rich-portion coal flow into a lower section of the chamber, and a second burner which includes primary-air/thin-portion nozzles for ejecting thin-portion coal flow into a higher section of the chamber.
Abstract:
A combustion furnace and a method of its operation are described. The furnace comprises a chamber defining a combustion volume having at least one primary inlet for fuel and combustion supporting gases and at least one primary outlet for combustion product gases, which chamber is provided with one or more additional ports, for example in fluid communication with a supply of gas for secondary gas flow, allowing for secondary gas flow into and/or out of the combustion volume.
Abstract:
A spray nozzle is provided with upper and lower channels and from respective surfaces, the two channels form a cross shape, and become a fuel spray hole by communication of an intersecting part. A guide member is provided, in contact with the upstream-side channel, in a position overlapped with the intersecting part with respect to the spray direction of the spray nozzle. Spray fluid is branched with the guide member from the fuel fluid duct connected to the spray nozzle, passes through the upstream-side channel, to the intersecting part, and is sprayed. The spray fluid forms opposed flows toward the intersecting part in the upstream-side channel to collide with each other at an obtuse angle of 90° or greater, then is sprayed from the intersecting part, to form a thin fan-shaped liquid film. The liquid film is divided by a shearing force from the peripheral gas, atomized into spray particles.
Abstract:
Combustion systems having reduced nitrogen oxide emissions and methods of using the same are disclosed herein. In one embodiment, a combustion system is provided. The combustion system includes a combustion zone, which includes a burner for converting a fuel, under fuel rich conditions, to a flue gas. An intermediate staged air inlet is downstream from the combustion zone, for supplying intermediate staged air to the flue gas and producing fuel lean conditions. A reburn zone is downstream from the intermediate staged air inlet for receiving the flue gas. A process for using the combustion system and a method of reducing NOX flowing into the reburn zone of a combustion system are also described herein.
Abstract:
The present application and the resultant patent provide a combustion system. The combustion system may include a combustion chamber for combusting a flow of fuel and a flow of air to a flow of flue gases, an overfire air system in communication with the combustion chamber, and a flue gas return line in communication with the overfire air system such that a recycled flue gas flow mixes with an overtire air flow before entry into the combustion chamber.
Abstract:
A method and an arrangement for optimising combustion conditions in a fluidised-bed boiler, in which combustion gas is fed at two or more height levels, the first of which is a primary level (P) which is located at the height of a furnace bottom and the second is a secondary level (S) which is located above fuel feed height (F), above which secondary level (S) there can be still other combustion gas feed levels (T, . . . ). At least one combustion gas feed level (P, S, T, . . . ) is fed at different points of the furnace (11) in its horizontal direction with combustion gases having different oxygen contents such that zones of different oxygen content can be formed in the horizontal direction of the furnace (11).