Abstract:
The present invention provides a vibration-actuated micro mirror device comprising a substrate having a swinging frame and a reflection mirror, and a vibration part having a first and a second vibration structures coupled to the substrate, wherein the first vibration structure is driven to generate a first complex wave formed by a first and a second wave signals while the second vibration structure is driven to generate a second complex wave formed by a third and a fourth wave signals, and the first and the third wave signals are formed with the same frequency and phase while the second and the fourth wave signals are formed with the same frequency but opposite phases. The first and the second complex waves actuate the substrate such that the swinging frame is rotated about a first axis while the reflection mirror is rotated about a second axis.
Abstract:
A motion compensation de-interlacing image processing apparatus is provided. The apparatus includes a motion compensation module, a still compensation module, a motion detection module, and a de-interlacing blending module. The motion compensation module generates a motion compensation pixel according to at least one of a current field, a previous field, and a next field of a target pixel to be interpolated. The still compensation module generates a still compensation pixel according to the previous field and the next field of the target pixel. The motion detection module determines a motion index according to the previous field and the next field of the target pixel. The de-interlacing blending module generates the target pixel by weighted averaging the motion compensation pixel and the still compensation pixel according to the motion index.
Abstract:
The present disclosure provides a non-volatile memory device. A memory device includes a first magnetic element having a fixed magnetization. The memory device also includes a second magnetic element having a non-fixed magnetization. The memory device further includes a barrier layer between the first and second magnetic elements. A unidirectional current source is electrically coupled to the first and second magnetic elements. The current source is configured to provide a first current to the first and second memory elements. The first current has a first current density and is in a first direction. The current source is also configured to provide a second current to the first and second magnetic elements. The second current has a second current density, different than the first current density, and is in the first direction. The first and second currents cause the non-fixed magnetization of the second magnetic element to toggle between substantially parallel to the fixed magnetization of the first magnetic element and between substantially antiparallel to the fixed magnetization of the first magnetic element.
Abstract:
A circuit includes magneto-resistive random access memory (MRAM) cell and a control circuit. The control circuit is electrically coupled to the MRAM cell, and includes a current source configured to provide a first writing pulse to write a value into the MRAM cell, and a read circuit configured to measure a status of the MRAM cell. The control circuit is further configured to verify whether a successful writing is achieved through the first writing pulse.
Abstract:
The present disclosure provides a magnetic memory element. The memory element includes a magnetic tunnel junction (MTJ) element and an electrode. The electrode includes a pinning layer, a pinned layer, and a non-magnetic conductive layer. In one embodiment, the MTJ element includes a first surface having a first surface area, and the electrode includes a second surface. In the embodiment, the second surface of the electrode is coupled to the first surface of the MTJ element such that an interface area is formed and the interface area is less than the first surface area.
Abstract:
A movable lens module includes a plate type piezoelectric driving unit, a movable stage, a lens base and a lens group. The movable stage is in contact with the plate type piezoelectric driving unit, and is driven by the plate type piezoelectric driving unit to move. The lens base is disposed on the movable stage. The lens group includes at least one lens installed in the lens base. An optical lens module can be assembled by components of the movable lens module.
Abstract:
An ultrasonic linear motor includes a substrate; a vibrator disposed on the substrate having an oblique or curved face at two sides thereof forming concave receiving portions with the surfaces of the substrate; and a slider having clamping portions at two sides thereof for correspondingly clamping to the receiving portions, wherein the vibrator is for generating a driving force to the slider while connecting with a power supply, such that the clamping portions of the slider move within the receiving portions, thereby generating a linear translation. The present invention adopts a simple structure having few elements that enables easy manufacturing and integration with other elements, thus reducing manufacturing cost.
Abstract:
A method of operating magneto-resistive random access memory (MRAM) cells includes providing an MRAM cell, which includes a magnetic tunneling junction (MTJ) device; and a selector comprising a source-drain path serially coupled to the MTJ device. The method further includes applying an overdrive voltage to a gate of the selector to turn on the selector.
Abstract:
Disclosed is an image-stabilization driving device including a first sliding member connected to an image sensor; a first piezoelectrical element for driving the first sliding member to move linearly along a first direction; a second sliding member connected to the first piezoelectrical element; and a second piezoelectrical element for driving the second sliding member to move linearly along a second direction intersecting with the first direction. The first and second piezoelectrical elements are adapted to drive the image sensor to move in a plane, thereby providing a structurally simple and miniaturized image-stabilization driving device.
Abstract:
An ultrasonic linear motor includes a substrate; a vibrator disposed on the substrate having an oblique or curved face at two sides thereof forming concave receiving portions with the surfaces of the substrate; and a slider having clamping portions at two sides thereof for correspondingly clamping to the receiving portions, wherein the vibrator is for generating a driving force to the slider while connecting with a power supply, such that the clamping portions of the slider move within the receiving portions, thereby generating a linear translation. The present invention adopts a simple structure having few elements that enables easy manufacturing and integration with other elements, thus reducing manufacturing cost.