Abstract:
A jitter buffer in a Voice over LTE receiver may be influenced by radio level feedback (RLF) from both local and remote endpoints to preemptively adjust the jitter buffer delay in anticipation of predicted future losses that have a high probability of occurring. The radio events of the RLF and the scenarios that trigger the preemptive adjustments may be identified, and their use may be expressed in terms of mathematical formulas. Previously, the instantaneous jitter was derived from a weighted history of the media stream, and consequently only packets that had already been received were used to compute the instantaneous jitter to adjust the length of the buffer. By providing and using RLF from both local and remote endpoints, the anticipated delay—for packets that have not yet arrived—may be used to preemptively adjust the buffer, thereby minimizing packet loss without introducing unnecessary delay.
Abstract:
Generating and using a device-type specific preferred public land mobile network (PLMN) list for roaming PLMN selection. Wireless devices sharing one or more common characteristics may be tasked with collecting roaming PLMN selection data. That data may be collected and used to generate a preferred PLMN list specific to wireless devices sharing those common characteristics. The preferred PLMN list may be distributed to wireless devices sharing those common characteristics, which may then use it in conjunction with roaming PLMN selection.
Abstract:
Methods and apparatus for dynamic search management in a multi-mode device. In one embodiment, a mobile device performs network search and acquisition by dynamically changing search delays and/or search frequencies. In one implementation, the mobile device adjusts the amount of time allocated for each network search based on e.g., previous network connection history (e.g., previously connected to a home network, previously connected to a roaming network), device conditions, user preferences, geographical information, etc. By focusing search effort on cellular technologies which have a high likelihood of success, the mobile device can greatly improve search time and reduce unnecessary power consumption.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
A user identity module (UIM) is incorporated in user equipment such as a mobile phone or mobile device. The UIM is configured to provision itself while roaming away from a home network as follows. The UIM may: send to the UE a request for information identifying a current radio access technology (RAT) that the UE is camped on; receive the current RAT information from the UE; send to the UE a request for network location information, where the network location information identifies a network in which the UE is currently camped; receive the network location information from the UE; generate an access point name (APN) using the current RAT information and the network location information; and open a channel through the network to a remote agent (e.g., a provisioning server) using the access point name.