Abstract:
An inventive process is disclosed for creating a barrier layer on a silicon substrate of an in-process integrated circuit. The process uses MOCVD to form a metal oxide film. The source gas is preferably an organometallic compound. Ozone is used as an oxidizing agent in order to react with the source gas at a low temperature and fully volatilize carbon from the source gas. The high reactivity of ozone at a low temperature provides a more uniform step coverage on contact openings. The process is used to create etch stop layers and diffusion barriers.
Abstract:
The present invention is directed to a novel etching process for a semiconductor material which inhibits corrosion of metal comprised of pretreating the material, preferably with a surfactant, and then exposing the material to a mixture comprising salt, a buffered oxide etch, and optionally a surfactant.
Abstract:
A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate. The baseplate includes a substrate, an emitter formed on the substrate and a dielectric layer formed on the substrate and having an opening formed about the emitter. The baseplate also includes a conductive extraction grid formed on the dielectric layer and having an opening formed about the emitter.
Abstract:
A etch stop layer for use in a silicon oxide dry fluorine etch process is made of silicon nitride with hydrogen incorporated in it either in the form of N—H bonds, Si—H bonds, or entrapped free hydrogen. The etch stop layer is made by either increasing the NH3 flow, decreasing the SiH4 flow, decreasing the nitrogen flow, or all three, in a standard PECVD silicon nitride fabrication process. The etch stop can alternatively be made by pulsing the RF field in either a PECVD process or an LPCVD process.
Abstract:
A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate. The baseplate includes a substrate, an emitter formed on the substrate and a dielectric layer formed on the substrate and having an opening formed about the emitter. The baseplate also includes a conductive extraction grid formed on the dielectric layer and having an opening formed about the emitter.
Abstract:
A faceplate in a flat panel display has attachment sites made with a method that includes steps of mixing frit and photoresist to form a mixture, applying the mixture to the substrate, softbaking the substrate and mixture, and exposing and developing the resist to define adhesion sites. Spacers are then attached to the faceplate at the adhesion sites.
Abstract:
A method of electrically testing pixel functionality is provided comprising releasably disposing a wafer in a socket. The wafer has at least one baseplate comprised of cathode emitters arranged in pixels. The socket has pads. The socket pads are contacted with test pins, and each of the pixels is addressed individually, thereby causing the cathode emitters to emit electrons in a current. The current is collected from each of the pixels on an anode screen. Alternatively, the anode card may have pins, and these pins contact pads on the baseplate. The baseplate, or substrate with baseplates, does not require a socket with pins.
Abstract:
The image rendered by a field emission display is altered. The display includes emitter tips, an extraction grid, and conductive elements in a display screen. A first voltage is applied to at least one emitter tip, a second voltage is applied to the extraction grid at a location proximate the emitter tip to which the first voltage is applied, and a third voltage is applied to a portion of the display screen. The second and third voltages are separately variable so that an adjustment causing a voltage increase in one of the second and third voltages can take effect concurrently with another adjustment causing a voltage decrease in the other of the second and third voltages. The first, second, and third voltages cooperate with the structure to generate an electron emission stream impinging upon a first area of the display screen. The area of the display screen impinged by the electron emission stream is changed.
Abstract:
A process is disclosed for anodically bonding an array of spacer columns to one of the inner major faces on one of the generally planar plates of an evacuated, flat-panel video display. The process includes the steps of: providing a generally planar plate having a plurality of spacer column attachment sites; providing electrical interconnection between all attachment sites; coating each attachment site with a patch of oxidizable material; providing an array of unattached permanent glass spacer columns, each unattached permanent spacer columns being of uniform length and being positioned longitudinally perpendicular to a single plane, with the plane intersecting the midpoint of each unattached spacer column; positioning the array such that an end of one permanent spacer column is in contact with the oxidizable material patch at each attachment site; and anodically bonding the contacting end of each permanent spacer column to the oxidizable material layer. The invention also includes an evacuated flat panel display having spacer structures which are anodically bonded to an internal major face of the display, as well as a face plate assembly manufactured by the aforestated process.
Abstract:
A method for creating emitters of a field emission device is provided. First, a hardmask layer is deposited on a substrate used to form emitters. On the hardmask layer, a photoresist layer is deposited. Islands of photoresist are exposed by an exposing energy through holes in a mask layer. The mask layer is removed and the substrate soft-baked in an oven having an atmosphere of basic gas. Following the soft-bake, the substrate is flood exposed, and then developed using conventional means, leaving behind hardened islands of exposed and baked photoresist. The hardmask layer is etched using the hardened islands as an etching barrier, and the substrate etched with a chemical etchant using the etched hardmask layer as an etching barrier. The etching continues until the substrate material below the etched hardmask layer is formed into an array of points of substrate. Once these emitter sites are formed, a field emission display having uniform emitters can be created.