Abstract:
Various systems and methods are described for operating an engine system having a sensor coupled to an exhaust gas recirculation system in a motor vehicle. One example method comprises during a first operating condition, directing at least some exhaust gas from an exhaust of the engine through the exhaust gas recirculation system and past the sensor to an intake of the engine and, during a second operating condition, directing at least some fresh air through the exhaust gas recirculation system and past the sensor.
Abstract:
Methods and systems are provided for regulating air flow through a charge air cooler. In one example, an air flow regulating element may be positioned in a tank of the charge air cooler, the air flow regulating element including a cylindrical barrel valve rotatable about a rotational axis to adjust air flow through cooling tubes in the charge air cooler. A position of the barrel valve may be based on a mass air flow rate and/or a temperature at an outlet of the charge air cooler.
Abstract:
A turbocharged engine system including a low-pressure exhaust gas recirculation (EGR) system and an intake oxygen sensor is described, along with methods for its operation. The system includes a compressor bypass valve arranged in a passage bypassing a turbocharger compressor, and an EGR valve arranged in an EGR system which may be adjusted to adjust an amount of exhaust gas recirculated to the engine intake. In one example method, over-dilution of an engine intake charge may be reduced by reducing EGR upon opening of the compressor bypass valve, and then increasing the EGR only after measurements from an intake oxygen sensor indicate that intake air dilution has decreased below a threshold.
Abstract:
An engine is provided that includes an exhaust gas recirculation (EGR) conduit in fluidic communication with a first exhaust valve in a cylinder and an intake system, an exhaust conduit in fluidic communication with a second exhaust valve in the cylinder and an emission control device. During operation with the first valve active and the second valve deactivated, a fixed EGR level can be provided. However, during operation with the first valve deactivated and the second valve active, increased engine output can be achieved with reduced EGR without requiring additional exhaust throttling or switching valves.
Abstract:
Methods and systems are provided for reducing corrosion of a charge air cooler and reducing engine misfire due to condensate formation. In response to charge air cooler outlet temperature, electric fan operation and grille shutter opening is adjusted. Electric fan operation and grille shutter opening may also be controlled in response to vehicle operating conditions.
Abstract:
An exhaust gas recirculation system for an engine includes a conduit, and a U-shaped exhaust gas mixer. The conduit is configured to direct an exhaust gas away from an exhaust manifold. The U-shaped exhaust gas mixer is configured to direct exhaust gas from the conduit and into an engine air intake system. The U-shaped exhaust gas mixer is arranged with a pre-mixing cavity configured to disperse the exhaust gas and entraining the exhaust gas into an intake air flow prior to distribution into an intake manifold of an engine.
Abstract:
An engine system includes an engine having an intake manifold, a turbocharger having a compressor, and an exhaust gas recovery (EGR) mixer coupled between the compressor and the intake manifold. The EGR mixer includes a central air duct having a central axis, an annular ring circumscribing the central duct and having an inlet connectable to an EGR system and an outlet in fluid communication with the central air duct, and a vane assembly disposed in the central air duct upstream of the annular ring and having a plurality of vanes configured to swirl air passing therethrough.
Abstract:
Methods and systems are provided for to methods and systems for distributing exhaust gas to a turbine, a turbocharger bypass, and an exhaust gas recirculation (EGR) line via a valve. In one example, a method may include selectively flowing exhaust gas, via a valve coupled to an exhaust passage, to one or more of an exhaust gas recirculation (EGR) passage, an exhaust turbine, and an exhaust catalyst via a bypass passage without flowing through the exhaust turbine based on engine operating conditions.
Abstract:
An exhaust gas recirculation system for an engine includes a first conduit, a second conduit, and a mixer. The first conduit is configured to direct a first portion of exhaust gas away from a first exhaust manifold. The second conduit is configured to direct a second portion of exhaust gas away from a second exhaust manifold. The mixer is configured to direct the first and second portions of the exhaust gas from the first and second conduits, respectively, into an engine air intake system. The mixer is arranged to segregate the first and second portions of the exhaust gas while the first and second portions of the exhaust gas are within the mixer. The mixer forms a ring about a perforated tube. The mixer is configured to direct the first and second portions of the exhaust gas into the air intake system via the perforated tube.
Abstract:
Methods and systems are provided for a vehicle wirelessly communicating with a central server. In one example, a method may include monitoring faults and sending engine conditions along with driver inputs to the central server for processing.