Abstract:
A method for device-to-device (D2D) communication includes sensing D2D resources from a pool of resources for a predetermined duration to produce measurements of the D2D resources and determining statistics in accordance with the measurements of the D2D resources. The method also includes determining a first subset of the D2D resources in accordance with the statistics and transmitting, by a first user equipment (UE) to a second UE, data over the first subset of the D2D resources.
Abstract:
System and method embodiments are provided for controlling and managing in-network device-to-device (D2D) communications. In an embodiment, a method for a UE performing device-to-device (D2D) communication includes generating a D2D buffer status report (BSR) for a D2D communication link between the UE and a second UE that provides information related to an amount of D2D data available for transmission, wherein the D2D BSR comprises a D2D BSR logical channel identifier (LCID); transmitting the D2D BSR in a control element; receiving, a resource allocation for the D2D link; and transmitting D2D data over the allocated resources.
Abstract:
System and method embodiments are provided for network adaption and utilization of a discovery signal (DS). In an embodiment, a method in a UE for communicating in a wireless network includes receiving a parameter(s) from a network controller, wherein the parameter provides the UE with an activation time frame within which the UE can expect to receive a common reference signal (CRS) from a network component, a deactivation time frame within which the UE is not to expect to receive the CRS, and information for receiving and processing a DS from the network component; receiving the DS from the network component, wherein a structure and format of the DS conforms to the parameter received by the UE; refraining from attempting to perform CRS based procedures when the CRS is not received; and performing one of synchronization, cell identification, and DS based radio resource management (RRM) measurements according to the DS.
Abstract:
Encoded control information can be mapped to an enhanced physical downlink control channel (ePDCCH) search space of a user equipment (UE) in accordance with an offset and aggregation level. The ePDCCH search space may include a physical resource block (PRB) set located in a data region of a downlink subframe. The encoded control information may be mapped into one or more enhanced control channel elements (eCCEs) of the ePDCCH search space beginning from a starting location. The starting location is an eCCE location within the PRB set. The PRB set, as well as the starting/eCCE location within the PRB set, are identified in accordance with an offset associated with the UE. A number of eCCEs carrying encoded information corresponds to an aggregation level.
Abstract:
A device is configured to perform a method of wireless communication in a wireless communication network. The method includes receiving, from a communications controller, a device-to-device (D2D) subframe configuration to communicate with one or more second wireless devices, the subframe configuration indicating one or more subframes in which to transmit a D2D signal or receive one or more D2D signals. The method also includes receiving, from the communications controller, scheduling information to transmit a first signal to the communications controller on a subframe indicated by the D2D subframe configuration. The method further includes prioritizing the transmission of the first signal over a transmission of the D2D signal or a reception of the one or more D2D signals, and transmitting the first signal.
Abstract:
Methods and devices for reducing traffic over a wireless link through the compression or suppression of high layer packets carrying predictable background data prior to transportation over a wireless link. The methods include intercepting application layer protocol packets carrying the predictable background data. In embodiments where the background data is periodic in nature, the high layer packets may be compressed into low-layer signaling indicators for communication over a low-layer control channel (e.g., an on off keying (OOK) channel). Alternatively, the high layer packets may be suppressed entirely (not transported over the wireless link) when a receiver side daemon is configured to autonomously replicate the periodic background nature according to a projected interval. In other embodiments, compression techniques may be used to reduce overhead attributable to non-periodic background data that is predictable in context.
Abstract:
Embodiments are provided herein for determining a synchronizing master for device-to-device (D2D) communication in a cellular network environment. In an embodiment, a user equipment (UE) receives a discovery signal comprising a timing reference, and determines a transmitter of the discovery signal. In accordance with the determination of the transmitter of the discovery signal, the UE performs one of synchronizing to the timing reference in the discovery signal and transmitting a second discovery signal. The UE performs the synchronizing to the timing reference if the transmitter of the discovery is a cellular network. Alternatively, the UE transmits the second discovery signal upon determining that the transmitter of the discovery signal is a second UE that is out of coverage of a cellular network.
Abstract:
Embodiments are provided to implement a time/power/frequency hopping scheme for device-to-device (D2D) discovery. The embodiments improve the UE detection of D2D discovery signals from neighboring UEs and account for large number of UEs' discovery signals. This is achieved by having neighboring UEs transmitting at different time instances and at different power levels. Further, neighboring UEs can be configured to transmit on different frequencies. This is achieved by assigning different time/power/frequency sequences to different UEs. An embodiment method includes transmitting, to a UE, parameters a hopping pattern of a first sequence of resources for transmitting a discovery signal by the UE and of a second sequence of resources for receiving a second discovery signal by the UE. The first sequence of resources comprises at least one of a sequence of time instances and a sequence of power levels. The second sequence of resources comprises time instances.
Abstract:
Encoded control information can be mapped to an enhanced physical downlink control channel (ePDCCH) search space of a user equipment (UE) in accordance with an offset and aggregation level. The ePDCCH search space may include a physical resource block (PRB) set located in a data region of a downlink subframe. The encoded control information may be mapped into one or more enhanced control channel elements (eCCEs) of the ePDCCH search space beginning from a starting location. The starting location is an eCCE location within the PRB set. The PRB set, as well as the starting/eCCE location within the PRB set, are identified in accordance with an offset associated with the UE. A number of eCCEs carrying encoded information corresponds to an aggregation level.
Abstract:
A method for operating a communications controller includes selecting a search space configuration out of a set of candidate search space configurations for a user equipment served by the communications controller, wherein the search space configuration specifies one or more search spaces to be monitored out of a set of search spaces, and signaling the selected search space configuration to the user equipment.