SELF-ALIGNED SOURCE/DRAIN CONTACT FOR VERTICAL FIELD EFFECT TRANSISTOR

    公开(公告)号:US20200075775A1

    公开(公告)日:2020-03-05

    申请号:US16559783

    申请日:2019-09-04

    Abstract: A method for manufacturing a semiconductor device includes forming a fin on a semiconductor substrate. In the method, a bottom source/drain region is formed between the fin and the semiconductor substrate, and a top source/drain region is formed on the fin. The method further includes forming a cap layer covering part of a top surface of the top source/drain region. A portion of the top source/drain region and an underlying portion of the fin not covered by the cap layer are removed. The removal exposes a portion of the bottom source/drain region. A dielectric spacer is formed on a side of the fin adjacent the exposed portion of the bottom source/drain region, and extends onto a side of the top source/drain region. A bottom source/drain contact is formed on the exposed portion of the bottom source/drain region and on the dielectric spacer.

    NANOSHEET MOSFET WITH ISOLATED SOURCE/DRAIN EPITAXY AND CLOSE JUNCTION PROXIMITY

    公开(公告)号:US20200052124A1

    公开(公告)日:2020-02-13

    申请号:US16059101

    申请日:2018-08-09

    Abstract: A sacrificial inner dielectric spacer is formed on physically exposed sidewalls of each recessed semiconductor channel material nanosheet of a nanosheet material stack that further includes recessed sacrificial semiconductor material nanosheets that have an inner dielectric spacer formed on physically exposed sidewalls thereof. A local isolation region is then formed by selective epitaxial growth on a surface of a semiconductor substrate containing the nanosheet material stack. After forming the local isolation region, the sacrificial inner dielectric spacers are removed and a source/drain region is formed on the physically exposed surface of each recessed semiconductor channel material nanosheet. A portion of the source/drain structure is formed in a gap located between each neighboring pair of vertically spaced apart inner dielectric spacers.

    Vertical Transistors with Different Gate Lengths

    公开(公告)号:US20200043916A1

    公开(公告)日:2020-02-06

    申请号:US16584813

    申请日:2019-09-26

    Abstract: Techniques for forming VFETs with differing gate lengths are provided. In one aspect, a method for forming a VFET device includes: patterning fins in a substrate, wherein at least one of the fins includes a vertical fin channel of a FET1 and at least another one of the fins includes a vertical fin channel of a FET2; forming a bottom source and drain; forming bottom spacers on the bottom source and drain; forming gates surrounding the vertical fin channel of the FET1 and FET2; forming top spacers on the gate; and forming top source and drains at the tops of the fins by varying a positioning of the top source and drains relative to at least one of the vertical fin channel of the FET1 and the FET2 such that the FET1/FET2 have an effective gate length Lgate1/Lgate2, wherein Lgate1>Lgate2. A VFET device is also provided.

    Vertical FET with Various Gate Lengths by an Oxidation Process

    公开(公告)号:US20200043798A1

    公开(公告)日:2020-02-06

    申请号:US16596570

    申请日:2019-10-08

    Abstract: Techniques for forming VFETs with differing gate lengths Lg on the same wafer using a gas cluster ion beam (GCIB) process to produce fins of differing heights are provided. In one aspect, a method of forming fins having different heights includes: patterning the fins having a uniform height in a substrate, the fins including at least one first fin and at least one second fin; forming an oxide at a base of the at least one second fin using a low-temperature directional oxidation process (e.g., GCIB oxidation); and removing the oxide from the base of the at least one second fin to reveal the at least one first fin having a height H1 and the at least one second fin having a height H2, wherein H2>H1. VFETs and methods for forming VFETs having different fin heights using this process are also provided.

Patent Agency Ranking