Nanosheet semiconductor devices with n/p boundary structure

    公开(公告)号:US11502169B2

    公开(公告)日:2022-11-15

    申请号:US17128351

    申请日:2020-12-21

    Abstract: A method of manufacturing a nanosheet field effect transistor (FET) device is provided. The method includes forming a plurality of nanosheet stacks on a substrate, the nanosheet stacks including alternating layers of first type sacrificial layers and active semiconductor layers. The method includes forming the first type sacrificial layer on sidewalls of the nanosheet stacks, then forming a dielectric pillar between the sidewall portions of the first type sacrificial layers of adjacent nanosheet stacks, and then removing the first type sacrificial layer. The method also includes forming a PWFM layer in spaces formed by the removal of the first type sacrificial layer for a first one of the nanosheet stacks, and includes forming a NWFM layer in spaces formed by the removal of the first type sacrificial layer for an adjacent second one of the nanosheet stacks.

    Strained nanowire transistor with embedded epi

    公开(公告)号:US11251280B2

    公开(公告)日:2022-02-15

    申请号:US16717204

    申请日:2019-12-17

    Abstract: Forming a fin, where the fin includes a nanowire stack on a semiconductor substrate, where the nanowire stack includes a plurality of silicon layers and a plurality of silicon germanium layers stacked one on top of the other in an alternating fashion, removing a portion of the fin to form an opening and expose vertical sidewalls of the plurality of silicon layers and the plurality of silicon germanium layer, and epitaxially growing a source drain region/structure in the opening from the exposed vertical sidewalls of the plurality of silicon layers and the plurality of silicon germanium layers, where the source drain region/structure substantially fills the opening.

    Vertical FET with symmetric junctions

    公开(公告)号:US11094798B2

    公开(公告)日:2021-08-17

    申请号:US16441640

    申请日:2019-06-14

    Abstract: An embodiment of the invention may include a method of forming a semiconductor structure, and the resulting semiconductor structure. The method may include removing a gate region from a layered stack located on a source/drain layer. The layered stack includes a first spacer located on the source drain layer, a dummy layer located on the first spacer, and a second spacer located on the dummy layer. The method may include forming a channel material above the source/drain layer in the gate region. The method may include forming a top source/drain on the channel material. The method may include forming a hardmask surrounding the top source/drain. The method may include removing a portion of the layered stack that is not beneath the hardmask.

    Nanosheet electrostatic discharge structure

    公开(公告)号:US11075273B1

    公开(公告)日:2021-07-27

    申请号:US16808504

    申请日:2020-03-04

    Abstract: Embodiments of the invention include a method for fabricating a semiconductor device and the resulting structure. A stack of alternating nanosheets of sacrificial semiconductor material nanosheets and semiconductor material nanosheets located on a surface of a substrate are provided, wherein a sacrificial gate structure and a dielectric spacer material layer straddle over the nanosheet stack. End portions of each of the sacrificial semiconductor material nanosheets are recessed. A dielectric spacer is formed within each recess. Doped semiconductor portions are formed on the physically exposed sidewalls of each semiconductor material nanosheet and on the surface of the substrate. The semiconductor structure is thermally annealed. The sacrificial gate, each sacrificial semiconductor material nanosheet, and the dielectric spacer are each removed. A doped epitaxial material structure is formed in regions occupied by each sacrificial semiconductor material nanosheet, where the doped epitaxial material structure wraps around each suspended semiconductor material nanosheet.

    FISHBONE LONG CHANNEL NANOSHEET DEVICE

    公开(公告)号:US20210210637A1

    公开(公告)日:2021-07-08

    申请号:US16736898

    申请日:2020-01-08

    Abstract: A method is presented for reducing sagging effects in nanosheet devices. The method includes forming at least two nanosheet structures over a substrate, wherein each nanosheet structure includes alternating layers of a first semiconductor material and a second semiconductor material, depositing a dielectric layer over the at least two nanosheet structures, depositing a dummy gate over the dielectric layer, etching the first semiconductor material to create voids filled with inner spacers, removing the dummy gate and the dielectric layer such that a supporting dielectric section remains between the at least two nanosheet structures, and removing the etched first semiconductor material such that a supporting structure is defined including the supporting dielectric section and the second semiconductor material.

Patent Agency Ranking