Abstract:
Disclosed is a wireless charging apparatus for a cable-type secondary battery. The wireless charging apparatus for the cable-type secondary battery according to the present disclosure includes a socket having a space formed inside for mounting the cable-type secondary battery, a first terminal that is electrically connected to an outer current collector of the cable-type secondary battery mounted in the socket, a second terminal that is electrically connected to an inner current collector of the cable-type secondary battery mounted in the socket, and a secondary coil for wireless charging having one end connected with the first terminal and the other end connected with the second terminal, and wound along an outer circumferential surface of the socket. According to the present disclosure, even if a secondary coil for wireless power reception is absent from a cable-type secondary battery, charging may be performed by a method for wireless power transmission and reception.
Abstract:
The present invention provides a cable-type secondary battery comprising an inner electrode which includes at least one first polarity electrode having a first polarity current collector with a long and thin shape, whose cross-section perpendicular to its longitudinal direction is a circular, oval or polygonal form; a first polarity electrode active material layer formed on an outer surface of the first polarity current collector; and an electrolyte layer filled to surround the first polarity electrode active material layer, and at least one wire-type second polarity electrode which wholly surrounds the inner electrode and is winding around the exterior thereof.Thus, the inventive cable-type secondary battery provided with an outer winding electrode has excellent flexibility to prevent the release of the active material.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode supporter; and a sheet-form laminate of inner electrode-separation layer-outer electrode, spirally wound on the outer surface of the inner electrode supporter, wherein the laminate of inner electrode-separation layer-outer electrode is formed by carrying out compression for the integration of an inner electrode, a separation layer for preventing a short circuit, and an outer electrode. In the cable-type secondary battery of the present disclosure, since the electrodes and the separation layer are adhered to each other and integrated, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present invention provides a cable-type secondary battery capable of wireless charge. The cable-type secondary battery according to the present invention can be applied in a wireless charging method, thereby being conveniently charged as compared with conventional batteries which are charged with wires, and has an outer current collector configured in a wound form, which can overcome the problem of local charge caused by the shape of conventional cable-type batteries. Also, the outer current collector configured in a wound form acts as a current of electrodes, and also can act as a charger which generates a current by external magnetic field, thereby simplifying battery configuration.
Abstract:
A sheet-form electrode for a secondary battery includes a current collector; an electrode active material layer formed on one surface of the current collector; a porous organic-inorganic layer formed on the electrode active material layer and including inorganic particles and a polymer binder; and a first porous supporting layer formed on the porous organic-inorganic layer. The sheet-form electrode for a secondary battery has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode supporter; and a sheet-form laminate of inner electrode-separation layer-outer electrode, spirally wound on the outer surface of the inner electrode supporter, wherein the laminate of inner electrode-separation layer-outer electrode is formed by carrying out compression for the integration of an inner electrode, a separation layer for preventing a short circuit, and an outer electrode. In the cable-type secondary battery of the present disclosure, since the electrodes and the separation layer are adhered to each other and integrated, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions, which comprises an electrolyte; an inner electrode, comprising an open-structured inner current collector surrounding the outer surface of the core, and an inner electrode active material layer formed on the surface of the inner current collector; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and comprising an outer electrode active material layer and an outer current collector.The core disposed in the inner electrode having an open structure, from which the electrolyte of the core for supplying lithium ions can be easily penetrated into an electrode active material, thereby facilitating the supply and exchange of lithium ions.
Abstract:
Disclosed is a cable-type secondary battery comprising at least one inner electrode layer including an inner electrode active material formed on a surface of an inner current collector having a horizontal cross section of a predetermined shape and extending in a lengthwise direction, a separation layer formed to surround the inner electrode layer, and an outer electrode layer formed to surround the separation layer and including an outer electrode active material formed on a surface of an outer current collector, and the cable-type secondary battery further comprises a first connection terminal that is electrically connected to the outer current collector and formed at one end of the cable-type secondary battery, and a second connection terminal that is electrically connected to the inner current collector and formed at the other end of the cable-type secondary battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a porous polymer layer formed on the electrode active material layer; and a first porous supporting layer formed on the porous polymer layer.The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one of surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a porous polymer layer formed on the electrode active material layer; and a first porous supporting layer formed on the porous polymer layer.The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one of surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.