Abstract:
A ballast for driving one or more lamps includes a controller and a current reduction circuit for accelerating a controller reset. Upon detecting a fault, the controller disables the ballast for a preset period of time, and resets. The controller additionally resets when the ratio of a supplied second value to a supplied first value falls below a threshold value. The current reduction circuit reduces the supplied second value in less than the preset period of time, such that the ratio falls below the threshold value and the controller resets. An emergency lighting system includes the ballast as a primary ballast, a backup ballast, and a primary power source. The controller detects a fault if the primary power source de-energizes and the backup ballast disconnects the one or more lamps from the primary ballast. The current reduction circuit accelerates the reset of the controller when the primary power source de-energizes.
Abstract:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.
Abstract:
Combinatorial processing including stirring is described, including defining multiple regions of a substrate, processing the multiple regions of the substrate in a combinatorial manner, introducing a fluid into a first aperture at a first end of a body to dispense the fluid out of a second aperture at a second end of the body and into one of the multiple regions, and agitating the fluid using an impeller at a second end of the body to facilitate interaction of the fluid with a surface of the substrate.
Abstract:
A control circuit for use in a ballast configured for powering a first lamp set and a second lamp set. The second lamp set is operated via a controller and a second lamp driver circuit. The controller enables the second lamp driver circuit as a function of a monitored value corresponding to a current through a lamp of the second lamp set. The control circuit includes first and second input terminals for selectively connecting to the power supply. The control circuit reduces the monitored value as a function of a connection state of the first and second input terminals of the control circuit to the power supply. Thus, the control circuit causes the controller to selectively operate the second lamp driver circuit in order to energize the second lamp set in combination with the first lamp set.
Abstract:
A current fed bipolar junction transistor (BJT) based inverter ballast includes base drive circuits configured to drive respective BJT switches, and high-speed drive reverse peak current limiting circuits, configured to operate in conjunction with the respective base drive circuits.
Abstract:
A circuit or combined ballast for driving a fluorescent lamp and at least one light emitting diode (LED) includes an integrated driver circuit having an alternating current (AC) circuit that includes at least one ballast coil for driving the fluorescent lamp and a direct current circuit for driving the LED having a secondary winding inductively coupled with the fluorescent lamp ballast coil for driving the LED. A method of driving a lamp assembly includes at least one fluorescent lamp and at least one light emitting diode (LED) and a combined driver circuit for supplying both the fluorescent lamp and the LED. The combined driver circuit supplies high voltage AC supply to a first portion of the driver circuit to the fluorescent lamp, supplies low voltage DC supply in a second portion of the driver circuit to the LED, and provides a secondary winding in the second portion of the driver circuit that is inductively coupled with a ballast coil in the first portion of the driver circuit that drives the fluorescent lamp.
Abstract:
A load store advisory program sets a breakpoint within a portion of a program, determines if the breakpoint will cause unexpected behavior, and generates a warning if it is determined that the breakpoint will cause unexpected behavior. The unexpected behavior may be the result of setting a breakpoint within a load-store sequence that, because of the breakpoint, will repeatedly fail.
Abstract:
Methods for improving selective deposition of a capping layer on a patterned substrate are presented, the method including: receiving the patterned substrate, the patterned substrate including a conductive region and a dielectric region; forming a molecular masking layer (MML) on the dielectric region; preparing an electroless (ELESS) plating bath, where the ELESS plating bath includes: a cobalt (Co) ion source: a complexing agent: a buffer: a tungsten (W) ion source: and a reducing agent; and reacting the patterned substrate with the ELESS plating bath for an ELESS period at an ELESS temperature and an ELESS pH so that the capping layer is selectively formed on the conductive region. In some embodiments, methods further include a pH adjuster for adjusting the ELESS pH to a range of approximately 9.0 pH to 9.2 pH. In some embodiments, the pH adjuster is tetramethylammonium hydroxide (TMAH). In some embodiments, the MML is hydrophilic.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.