Abstract:
Methods for sampling reactor contents in parallel reactor systems are disclosed. The methods may be used to sample reactor contents in non-atmospheric (e.g., pressurized) reaction vessels.
Abstract:
A method for making a number (N) of samples react under the same reaction conditions that includes heating a number of reaction containers simultaneously and maintaining the reaction containers at a predetermined temperature; placing a sample in each heated reaction chamber and maintaining a two-phase solution at a predetermined temperature; stirring the sample that is heated to the predetermined temperature to create a uniform solution, which is maintained for a predetermined time; and cooling the uniform solution without cooling the reaction container after the predetermined period of time has passed so as to gain a two-phase solution within the reaction container, where the samples have a solution where the phase state of a reaction solvent changes in a reversible manner between a two-phase solution state and a uniform solution state when the temperature fluctuates over or under a certain constant temperature.
Abstract:
An apparatus is provided for the semi-automated parallel synthesis of multiple peptides. The apparatus includes an array of nozzles, each positioned above or adjacent a separate reaction container, two or more liquid reservoirs, each reservoir coupled to the liquid dispenser(s), and base chamber(s) connected to the reaction containers for removing liquid there from. The addition and removal of liquids may be controlled by programmable electromagnetic valves. The apparatus may also be used for other parallel solid phase reactions. A method is also provided for synthesizing multiple polypeptides or other macromolecules, for example by using the above apparatus, wherein multiple common steps are performed automatically while reactants are added manually.
Abstract:
A system for combinatorially processing a substrate is provided. The system includes a reactor or chemical library having a plurality of chambers defined within the reactor or library, the chambers operable to mix fluids disposed therein. A drive system is disposed below a bottom surface of the reactor. The drive system is operable to rotate a plurality of support plates below the surface of the substrate. The plurality of support plates has a non-circular shape. The non-circular shape of adjacent support plates includes extensions configured to traverse overlapping regions of rotation during rotation of adjacent support plates. Each of the extensions has a magnet disposed thereon.
Abstract:
Combinatorial processing including stirring is described, including defining multiple regions of a substrate, processing the multiple regions of the substrate in a combinatorial manner, introducing a fluid into a first aperture at a first end of a body to dispense the fluid out of a second aperture at a second end of the body and into one of the multiple regions, and agitating the fluid using an impeller at a second end of the body to facilitate interaction of the fluid with a surface of the substrate.
Abstract:
To provide an organic synthesizer that can conduct a pressure reaction and an atmospheric reaction in one organic synthesizer and can realize attachment of reaction vessels to the organic synthesizer and detachment of the reaction vessels from the organic synthesizer without applying any load to gas supply/discharge pipes.[Means For Solving Problems] An organic synthesizer comprising a reaction vessel support part (160), which can support two or more reaction vessels, and pressure regulation means (164) for regulating the pressure within the reaction vessel supported by the reaction vessel support part (160) by supplying/discharging gas. Two or more pressure regulation means (164) are provided for each reaction vessel supported by the reaction vessel support part (160). At least one pressure regulation means (164A) in the two or more pressure regulation means (164) is constructed so as to be detachable from and attachable to the other pressure regulation means (164B). The pressure regulation means (164) comprises gas supply/discharge pipes (174a to 174d) and openings (194a to 174d) for supporting the gas supply/discharge pipes (174a to 174d). The gas supply/discharge pipes (174a to 174d) are constructed so that a part near the front end can be flexed in a vertical direction and in a lateral direction and are connected to the supported reaction vessels for gas supply and discharge.
Abstract:
Described is a parallel batch reactor for effecting chemical reactions. The parallel batch reactor includes a plurality of reactor vessels for receiving components of a reaction, an inlet port for receiving pressurized fluid, and a plurality of valves configured to transfer fluid from the inlet port to the reactor vessels and fluidically isolate one or more of the reactor vessels from at least one of the other reactor vessels. The reactor further includes a pressure monitoring system comprising an array of pressure sensors configured to sense pressure in the reactor vessels. Each of the pressure sensors is aligned with one of the plurality of reactor vessels and located external to the reactor vessels and fluid passageways in fluid communication with the reactor vessels.
Abstract:
A reactor for carrying out catalyzed liquid reactions in which the catalyst is present as a dispersion in the reaction zone. The reactor includes at least one inlet and outlet, with all starting materials being fed in via the inlet and all products being discharged via the outlet. The inlet and outlet can be switched so that an exit previously serving as the outlet is utilized as an entrance serving as the inlet and at the same time an entrance previously serving as the inlet is utilized as an exit serving as the outlet. The inlet and outlet each include a filter element that keeps the catalyst in the reactor. The reactor also includes a device that ensures homogeneous distribution of the catalyst and the starting materials in the reactor. This reactor can carry out reactions at a high solids content without the catalyst having to be separated off from a product stream in an extra process step and without regular cleaning and thus shutdown of the process being necessary.
Abstract:
A high throughput preparation of a plurality of different lubricating oil compositions for combinatorial libraries and subsequent high throughput screening for lubricant performance is provided. The methods can advantageously be optimized using combinatorial chemistry, in which a database of combinations of lubricating oil compositions are generated. As market conditions vary and/or product requirements or customer specifications change, conditions suitable for forming desired products can be identified with little or no downtime.
Abstract:
A system and a methodology for controlling multifunctional multireactor chemical synthesis instruments employ real time automatic controls, calculations, feedbacks and optional graphic tracking of parameters, process characteristics and events and offer templates for designing otherwise complex sequences for the bench chemist, physicist or biologist. Automatic lab notebook construction is also provided as well as remote monitoring and control options, warning alarms and shut down alarms.