Abstract:
Systems, methodologies, and devices are described that can facilitate reducing power consumption associated with mobile devices. A mobile device can utilize a sleep mode controller that can facilitate selecting and/or switching to a desired sleep mode based in part on predefined sleep mode criteria. The sleep modes can include a non-sleep mode, light sleep mode, and/or deep sleep mode. The mobile device can employ an analyzer to evaluate information related to explicit signals, implicit signals, and/or the current sleep mode to determine whether a condition is met based in part on the predefined sleep mode criteria such that a transition to a different sleep mode is to be performed. If such a condition is met, the sleep mode controller can facilitate transitioning from the current sleep mode to a different sleep mode to facilitate reducing power consumption by the mobile device.
Abstract:
A method of wireless communication manages the reporting of battery power for UE relays. A UE capable of serving as a UE relay receives a battery status report configuration. The battery status may be based on rate of power consumption, percentage of total battery power remaining, characteristics of particular battery type, and/or allocation of battery usage. The UE may transmit a battery status report to a base station.
Abstract:
Methods, systems, and devices are described for supporting common reference signaling in wireless communications systems. Some configurations introduce a phase discontinuity between common reference signal (CRS) transmissions on different subframes. This may address issues that may arise when a reduced CRS periodicity is utilized. Indicators may also be transmitted from base stations to user equipment (UEs) to indicate whether phase continuity may be assumed or not. Some configurations may support CRS sequence initialization. These tools and techniques may utilize an extended CRS sequence periodicity, which may increase the number of CRS sequences transmitted by a cell.
Abstract:
Methods, systems, and apparatuses for enabling and utilizing variable length transmission time intervals (TTI) are described. Latency for communications between base stations and user equipment (UEs) may be reduced by flexibly and dynamically adapting to data traffic needs. TTI for a given UE may be dynamically adjusted according to UE or system requirements and the configuration of uplink and downlink TTI. A base station may utilize dynamic grants to schedule resources within a system. A UE may receive a grant in a first portion of a variable TTI. The UE may determine a duration of the variable TTI based on the grant, and the UE may communicate accordingly. The UE may receive a subsequent grant in the variable TTI—either in the first portion or another portion—and may respond or alter its operation accordingly.
Abstract:
An enhanced data transmission operation is disclosed in which PDSCH and/or EPDCCH may be transmitted in the first symbol either with or without legacy control information multiplexed with the data transmissions. Base stations operating according to the various aspects may transmit indicators to related mobile devices that identify when such PDSCH/EPDCCH are transmitted in the first symbol period. UEs receive the multiplexed data transmissions and decode the appropriate PDSCH/EPDCCH transmissions along with any multiplexed legacy control information.
Abstract:
Techniques are described for wireless communication. A first method includes receiving from a base station an indication of a set of one or more uplink interlaces of an unlicensed radio frequency spectrum band allocated for a sounding reference signal, and transmitting the sounding reference signal for a user equipment (UE) over the indicated set of one or more uplink interlaces of the unlicensed radio frequency spectrum band. A second method includes receiving an indication of an interlace of an unlicensed radio frequency spectrum band allocated for a physical uplink control channel (PUCCH) transmission, and transmitting a scheduling request and a buffer status report over the indicated interlace.
Abstract:
Techniques are described for wireless communication. One method includes winning a contention for access to an unlicensed radio frequency spectrum band, transmitting a request message upon winning the contention for access to the unlicensed radio frequency spectrum band, and receiving a response message over the unlicensed radio frequency spectrum band. The request message is transmitted by a user equipment (UE) on an enhanced physical random access channel (ePRACH), to access a cell that operates in the unlicensed radio frequency spectrum band. The response message is received in response to transmitting the request message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with specifying a traffic-to-pilot (T/P) ratio per subframe and/or resource block to allow a base station to transmit over the subframes and/or resource blocks using varying transmit powers. In one example, a device communicating with the base station can receive a plurality of T/P ratios each related to a power used by the base station to transmit over one of a plurality of carriers in a specific subframe or resource block, determine a power of a reference signal received from the base station over a carrier of the plurality of carriers, and process a data signal received over the carrier within the specific subframe or resource block based in part on applying, to the power of the reference signal, a T/P ratio of the plurality of T/P ratios corresponding to the carrier.
Abstract:
When enabled with common reference signal interference cancellation, a user equipment (UE) may still compute a channel state feedback value with consideration of any canceled interfering neighboring signals. When the neighboring cells are determined to be transmitting data during the time for which the channel state feedback value is being computed, the UE is able to derive the channel state feedback value considering those canceled interfering signals. The UE determines whether each neighboring cell is transmitting during the designated time either by obtaining signals that indicate the transmission schedule of the neighboring cells or by detecting the transmission schedule, such as based on the power class of the neighboring cells. If the UE determines that the neighboring cells are transmitting data during this time period, the UE will compute the channel state feedback value including consideration of the canceled interfering signals.
Abstract:
Time division multiplexing (TDM) partitioning is one of the inter-cell interference coordination (ICIC) mechanisms considered for a heterogeneous network (HetNet) ICIC in a co-channel deployment. For example, in subframes that are pre-allocated to an evolved Node B (eNB), neighbor eNBs may not transmit, hence interference experienced by served user equipments (UEs) may be reduced. Semi-persistent scheduling (SPS) grants may have various available periodicities, which may not be compatible with TDM partitioning. Therefore, a UE may miss an SPS opportunity that was scheduled for a subframe that was not usable by the UE. Hence, using SPS grants with small periodicities in a heterogeneous network with TDM partitioning may require changes which may include adjusting the periodicities of the SPS grants, rescheduling of uplink SPS messages based on resource partitioning information (RPI), and/or determining RPI based on current SPS grants.