摘要:
A circuit and a method for solving the general problem of protecting core devices in integrated circuits from electrostatic discharge damage is provided. This circuit and a method prevents ESD voltage breakdown of thin oxide field effect transistors which are directly connected to the core Vdd power supply. The embodiments of this invention use inverter buffers using a thick or thin oxide devices at the input to the core circuitry is to be protected. Other embodiments of this invention use pass transistor or transfer gates made with thick or thin oxide devices at the input to the core circuitry is to be protected.
摘要:
A silicon controlled rectifier for SiGe process. The silicon controlled rectifier comprises a substrate, a buried layer of a first conductivity type in the substrate, a well of the first conductivity type in the substrate and above the buried layer, a doped region of a second conductivity type in the well, a first conducting layer of the second conductivity type on the substrate, and a second conducting layer of the first conductivity type on the first conducting layer.
摘要:
A low capacitance ESD protection device. The device comprises a substrate, a well of a first conductivity type in the substrate, a first and second transistor of the first conductivity type respectively on two sides of the well, a guard ring of a second conductivity type in the substrate, surrounding the well, and the first and second transistor, and a doped region of the second conductivity type in the well, wherein profiles of a drain and source region of each of the first and second transistor are un-symmetrical.
摘要:
A method of forming a semiconductor memory device formed on a semiconductor substrate with an N-well and a P-well comprises the following steps. Form over a substrate the combination of a gate oxide layer and a gate layer patterned into gate stacks with sidewalls for an NMOS FET device over a P-well in the substrate and a PMOS FET device over an N-well. Form P− lightly doped S/D regions in the N-well and N− lightly doped S/D regions in the P-well. Form spacers on the sidewalls of the gate stacks. Thereafter form deep N− lightly doped S/D regions in the P-well, and form deep P− lightly doped S/D regions in the N-well. Form heavily doped P++ regions self-aligned with the gate below future P+ S/D sites to be formed self-aligned with the spacers in the N-well, and form heavily doped N++ regions self-aligned with the gate below future N+ S/D sites to be formed self-aligned with the spacers in the P-well.
摘要:
The invention consists of an ESD protection discharging NMOS with a special drain dopant region that enables a lower voltage trigger point for Vcc to Vss ESD power protection. To enable this ESD protection, the NMOS source connected to a first voltage bus line, or Vcc, and the drain is connected to a second voltage bus line, or ground. The NMOS device gate is connected to ground through a difflused resistor assuring the device remains in an off state during normal operation. The unique invention special dopant region is located under and around the NMOS drain which lowers the drain to substrate breakdown voltage enabling the ESD protection current discharge to start at a lower voltage than otherwise. This feature reduces voltage stress on the gates of active devices being protected, and enables higher ESD current discharges at the same power level as for devices without the special drain dopant region.
摘要:
An embedded parasitic silicon controlled rectifier (SCR) in conjunction with a Gated-NMOS is created for protecting a chip input or output pad from electrostatic discharge ESD, by inserting a p+ diffusion and the n-well in the drain side and a part of the drain to forms a low-trigger, high efficiency SCR. The device layout is such that the drain connection is tightly tied together at the p+ diffusion and the n+ drain making that connection very short and, thereby, preventing latch-up. The parasitic SCR is contained entirely within the n+ diffusion (the source of the grounded gate NMOS transistor) at either side of the structure and, therefore, called an embedded SCR. For a 12 volt I/O device each of two n+ drains is placed in its own n-type doped drain (ndd) area straddling halfway the n-well. The structure is repeated as required and a p+ diffusion is implanted at both perimeters and connected to the nearest n+ source and a reference voltage.
摘要:
An ensemble of test structures comprising arrays of polysilicon plate MOS capacitors for the measurement of electrical quality of the MOSFET gate insulation is described. The test structures also measure plasma damage to these gate insulators incurred during metal etching and plasma ashing of photoresist. The structures are formed, either on test wafers or in designated areas of wafers containing integrated circuit chips. One of the test structures is designed primarily to minimize plasma damage so that oxide quality, and defect densities may be measured unhampered by interface traps created by plasma exposure. Other structures provide different antenna-to-oxide area ratios, useful for assessing plasma induced oxide damage and breakdown. The current-voltage characteristics of the MOS capacitors are measured by probing the structures on the wafer, thereby providing timely process monitoring capability.
摘要:
A device layout is disclosed for an ESD device for protecting NMOS or Drain-Extended (DENMOS) high power transistors where the protection device (an SCR) and the NMOS or DENMOS transistors are integrated saving on silicon real estate. The integration is made possible by adding a p.sup.+ diffusion to the n-well (drain) of a high power NMOS (DENMOS) transistor such that the added p.sup.+ diffusion together with the aforementioned n-well and the p-substrate of the silicon wafer create one of the two transistors of the SCR. A low triggering voltage of the SCR is achieved by having the second parasitic npn transistor of the SCR in parallel with the NMOS (DENMOS) transistor by sharing the n-well (collector/drain), p-substrate (base/channel region), and an adjacent n.sup.+ diffusion (emitter/source) in the p-substrate. A high HBM ESD Passing Voltage is obtained by utilizing the tank oxide method of a DENMOS transistor.
摘要:
A method to erase data from a flash EEPROM is disclosed. Electrical charges trapped in the tunneling oxide of a flash EEPROM are eliminated to maintain proper separation of the programmed threshold voltage and the erased threshold voltage after extended programming and erasing cycles. The method to erase a flash EEPROM cell begins by erasing the flash EEPROM cell by first applying a high positive voltage pulse to the source of the EEPROM cell. Simultaneously, a ground reference potential is applied to the semiconductor substrate and the control gate. At this same time the drain is floating. Floating the source and drain and applying the ground reference potential to the semiconductor substrate then detraps the flash EEPROM cell. At the same time, a relatively large negative voltage pulse is applied to the control gate.
摘要:
The present invention provides method to erase and program flash EEPROMS devices using a clipped sine waveform (Vg). The clipped sine waveform reduces the tunneling oxide electric field between the floating gate and the source or drain region thereby reducing electron trapping. The method for the erase cycle comprises: applying a positive voltage to a source region; grounding a well region; floating the drain region; and simultaneously applying a negative clipped sine waveform voltage to a control gate during the erase cycle. The program cycle of the invention comprises: applying a voltage to a drain region; grounding a well region; floating a source region; and simultaneously applying a clipped sine waveform voltage to the control gate whereby the clipped sine waveforms reduce the electric field in a tunnel oxide layer which reduces the electron trapping.