Abstract:
An unmanned aerial vehicle (UAV) which in some embodiments may comprise a fuselage which includes a cavity formed by an interior cavity wall and a fuselage exterior wall, with the cavity disposed within the fuselage. A first electronic module may be electrically coupled to a first magnetic connector and a second electronic module may be electrically coupled to a second magnetic connector. Electronic communication between the first and second modules may be provided by contact between the first magnetic connector and the second magnetic connector. In further embodiments, when removably positioned adjacent to each other in the cavity, the first magnetic connector may contact the second magnetic connector to establish electronic communication between the first and second modules.
Abstract:
An apparatus and method for controlling a yaw moment of a flight vehicle, such as an aircraft. A wing structure of the flight vehicle has a first opening or actuator positioned by a first apex section of a first side of the wing, and has a second opening or actuator positioned away from or at a distance from a second apex section of a second side of the wing. The first side and the second side can each be positioned or located opposite a centerline of the wing or wing structure. A pressure source or other pressure supply device is in communication with the first opening or actuator and the second opening or actuator to which a pressurized fluid, such as air, is controlled and delivered to control or vary the yaw moment of the flight vehicle.
Abstract:
A flight-operable, truly modular aircraft has an aircraft core to which one or more of outer wings members, fuselage, cockpit, leading and trailing edge couplings, and empennage and tail sections can be removably coupled and/or replaced during the operating life span of the aircraft. In preferred embodiments the aircraft core houses the propulsive engines, avionics, at least 80% of the fuel, and all of the landing gear. The aircraft core is preferably constructed with curved forward and aft composite spars, that transfer loads across the center section, while accommodating a mid-wing configuration. The aircraft core preferably has a large central cavity dimensioned to interchangeably carry an ordnance launcher, a surveillance payload, electronic countermeasures, and other types of cargo. Contemplated aircraft can be quite large, for example having a wing span of at least 80 ft.
Abstract:
A propeller includes a hub coaxially surrounding a longitudinal axis. A ring shroud coaxially surrounds the longitudinal axis and is spaced radially from the hub. The ring shroud includes an inner ring surface and a radially spaced, oppositely facing outer ring surface. At least one propeller blade is fixedly attached to both the hub and the inner ring surface and extends radially therebetween for mutual rotation therewith. At least one extending blade has a first extending blade end radially spaced from a second extending blade end. The first extending blade end is fixedly attached to the outer ring surface. The second extending blade end is cantilevered from the first extending blade end and is radially spaced from the ring shroud.
Abstract:
An aerial vehicle landing station comprising a first post and a second post, wherein the second post is spaced apart from the first post and a cable to capture an aerial vehicle, wherein the cable is stretched between the first post and the second post and configured to support the weight of the aerial vehicle once captured and the cable may provide a charging current to the aerial vehicle once captured. One or more markers may be further positioned on the cable to designate a landing point, wherein the one or more markers are configured to be visually tracked by the aerial vehicle. A cable management device coupled to the cable via one or more pulleys may regulate tension of the cable. A communications transceiver at the aerial vehicle landing station may wirelessly communicate data with the aerial vehicle.
Abstract:
An aerial vehicle having a low radar signature includes a first side on which turbine openings, and payload bays or landing gear bays are disposed. A second side of the aerial vehicle is designed to have a smaller radar signature than the first side.
Abstract:
An aircraft is provided and includes a fuselage, first and second wings extending outwardly from opposite sides of the fuselage, proprotors operably disposed on each of the first and second wings to drive vertical take-off and landing aircraft operations and horizontal flight aircraft operations and a refueling system including at least one fuel tank disposed in at least one or more of the fuselage, the first wing or the second wing and a refueling apparatus. The refueling apparatus is coupled to the at least one fuel tank such that fuel is movable with respect to the at least one fuel tank during aircraft ground and aerial operations.
Abstract:
A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.
Abstract:
Systems and associated methods for planning and control of a fleet of unmanned vehicles in missions that are coordinated temporally and spatially by geo-location, direction, vehicle orientation, altitude above sea level, and depth below sea level. The unmanned vehicles' transit routes may be fully autonomous, semi-autonomous, or under direct operator control using off board control systems. Means are provided for intervention and transit changes during mission execution. Means are provided to collect, centralize and analyze mission data collected on the set of participating unmanned vehicles.
Abstract:
An unmanned vehicle may include a vehicle body that comprises an enclosed hull. The unmanned vehicle may include a propulsion, a ballast control system, a center of gravity system, a pressurization system, a control surface system, a navigation control system, and an on board master control system. The on board master control system may execute local control over operation of the various systems of the unmanned vehicle. The unmanned vehicle may also include a power supply carried by a portion of the vehicle body to provide power to the various systems. The various systems of the unmanned vehicle may be independently operable to support selective operation of the unmanned vehicle in the air, on the surface of the water, and below the surface of the water.