Abstract:
An electron source/image display device manufacturing apparatus according to this invention includes (A) a support which supports a substrate having a first major surface and a second major surface on which a conductor is arranged, and includes a plurality of electrostatic chucks each having a conductive member, (B) a vessel which has a gas inlet port and an exhaust port, and covers part of the first major surface, (C) a valve connected to the inlet port to introduce gas into the vessel, (D) an exhaust system connected to the exhaust port to exhaust the gas from the vessel, and (E) a power supply for applying a predetermined potential difference between the conductor and the conductive member. This apparatus arrangement enables easy, stable processing in the nullformingnull and nullactivationnull steps.
Abstract:
The present invention relates to an electron-emitting device and an image display apparatus in which the electron-emitting device is provided. In the electron-emitting device, a substrate has sides in two orthogonal first directions. A plurality of pairs of electrodes are disposed on the substrate. A conductive thin film is disposed between each of the electrode pairs. A plurality of surface conduction electron-emitting elements are disposed in the conductive thin film by discharging drops of a source material of the film thereto, each electron-emitting element spaced apart from the opposing electrodes of one of the electrode pairs. The electron-emitting elements are arrayed in a matrix formation, the matrix having rows and columns in two orthogonal second directions, the electron-emitting elements being disposed such that the second directions of the matrix are parallel to the first directions of the substrate. Further, the present invention relates to an electron-emitting device production apparatus wherein an effective area in which a discharge head is capable of discharging the drops to the substrate is larger than an entire region that covers the electron-emitting elements on the substrate.
Abstract:
A diamond grit surface is formed on a substrate (1) having a metal surface (2), such as nickel, by applying a paste (4) of low-grade diamond grit in a binder to the surface. After driving off the binder, the diamond coated surface is placed in a reactor chamber (10) having a microwave plasma reactor (11) and connected to a hydrogen gas pump (12). The substrate (1) is heated in the hydrogen atmosphere at a reduced pressure. The metal surface (2) acts as a catalyst in the presence of the hydrogen plasma to cause regrowth of the diamond (6), giving an improved size, shape and adhesion. The method may be used to make diamond surfaces in electron emitter devices, circuit boards or abrasive devices.
Abstract:
An ink jet ink containing an organic metal complex compound including a metal element and an amino acid group, wherein the metal element is coordinated by the amino acid group.
Abstract:
In a method for producing an electron source substrate having a matrix of electron emitting elements formed by dispensing droplets of a solution containing a material for conductive thin film between each pair of element electrodes arranged in a matrix pattern on substrate, by use of an ink jet device, the ink jet device is the one having plural nozzles, delivery amounts of the respective nozzles are detected, the delivery amounts of the respective nozzles are adjusted based on the detection results, and thereafter dispensing of the droplets is carried out, during the dispensing of droplets, the substrate is moved relative to the ink jet device, and the droplets are dispensed from the plural nozzles to areas between each pair of element electrodes in plural rows or columns simultaneously and in parallel. An image forming apparatus is produced by placing at least a face plate equipped with fluorescent substance opposite the electron source substrate produced by the above method.
Abstract:
An electron apparatus includes a rear substrate having an electron-emitting device, a front substrate irradiated with electrons, and a support member for maintaining the interval between these substrates. The distribution of the electric field is controlled, and a force acting in the direction away from the support member is applied to emitted electrons to prevent the electrons from striking the support member. At this time, the electrons are accelerated toward the front substrate. Since the degree of deflection by a deflection force on the rear substrate side is larger than the degree of deflection by a deflection force on the front substrate side, the deflection force on the rear substrate side is relatively weakened.
Abstract:
An electron source comprises one or more electron-emitting devices, especially of surface conduction type, and is provided with means for supplying an activating substance to the device(s). The means comprises preferably a substance source and a heater or electron beam generator for gasifying the substance source. The electron source can be combined with an image-forming member (e.g. fluorescent body) to constitute an image-forming apparatus. The means is used for in situ activation or re-activation of the electron-emitting device(s).
Abstract:
A multi-electron beam source comprises an electron emitting element part including: a plurality of electron emitting elements provided two-dimensionally in a matrix-like arrangement on a substrate; opposing terminals of electron emitting elements arranged adjacently in the column direction thereof being electrically connected to each other; terminals on the same side of all the electron emitting elements in the same row being electrically connected; and the plurality of electron emitting elements being arranged in "m" rows, "m" representing a number of two or more, and a driving circuit part for driving said electron emitting element part. The multi-electron beam source has means for removing a spike noise superposed onto the driving pulse generated by said driving cirucit part.
Abstract:
An image forming apparatus includes a substrate, an electron-emitting device, a wiring electrode for applying an input signal to the electron-emitting device, and an image forming member to which an electron emitted from the electron-emitting device is irradiated. An acceleration electrode is provided opposite to the substrate, and a potential defining electrode is provided between the acceleration electrode and the substrate. A second support member connects the potential defining electrode and the acceleration electrode, and a first support member connects the wiring electrode and the potential defining electrode. The second support member has a semiconductive material surface, and the first support member has a resistance greater than that of the second support member by ten times or more.
Abstract:
A material for forming an electroconductive film on a substrate comprises a metal and hydrophobic and hydrophilic components. Preferably, the material comprises an organometallic complex expressed by general formula (R.sup.1 COO).sub.n M(NR.sup.2 R.sup.3 R.sup.4).sub.m wherein R.sup.1 represents an alkyl group, each of R.sup.2, R.sup.3 and R.sup.4 represents a hydrogen atom, an alkyl group or an alkenyl group, M represents a metal element and each of n and m represents an integer equal to or greater than 1. The material can be used for forming an electroconductive film of an electron-emitting device or forming a liquid crystal alignment film.