Abstract:
An osmotic therapeutic system for delivering a beneficial drug is disclosed. The system comprises a drug delivery module which module comprises a rate controlling laminated wall surrounding a reservoir and has a portal for delivering drug from the system. The laminated wall comprises a semipermeable lamina in laminar arrangement with a microporous lamina to provide a wall that is permeable to an external fluid, impermeable to drug and maintains its integrity during the delivery of drug. The reservoir contains a drug, or a mixture of drug and solute which drug or solute is soluble in the fluid and exhibits an osmotic pressure gradient across the wall against the fluid. In operation, drug is released from the system by fluid being imbibed through the wall into the reservoir at a rate determined by the permeability of the wall and the osmotic pressure gradient across the wall thereby producing a solution of drug, or a solution of solute containing drug which solution is released through the portal at a controlled rate over a prolonged period of time.
Abstract:
An osmotic system for delivering a beneficial agent is disclosed. The system comprises a wall surrounding an agent compartment and an osmagent compartment separated by a film and has a passageway through the wall for delivering agent from its compartment. The wall is formed of a material permeable to the passage of an external fluid and impermeable to the passage of agent and osmagent. The film is formed of a material impermeable to the passage of agent and osmagent and movable from an original to an expanded state. The agent compartment contains an agent that is soluble in the fluid and exhibits an osmotic pressure gradient across the wall against the fluid, or the compartment contains an agent that has limited solubility in the fluid and exhibits a limited osmotic pressure gradient across the wall against fluid. The osmagent compartment contains an osmagent that exhibits an osmotic pressure gradient across the wall against the fluid. In operation, agent is delivered from the system through the passageway by fluid being imbibed through the wall into the osmagent compartment urging it to increase in volume and expand the film and correspondingly diminishing the volume of the agent compartment, whereby agent is released at a rate controlled by the permeability of the wall, the osmotic pressure gradient across the wall, and the expansion of the film over a prolonged period of time.
Abstract:
An osmotically driven fluid dispenser for use in an aqueous environment comprising: a shape retaining canister having controlled permeability to water; an osmotically effective solute confined in the canister which, in solution, exhibits an osmotic pressure gradient against the water in the environment; an outlet in the canister wall; and a flexible bag of relatively impervious material that holds the fluid to be dispensed and is housed in the canister with its open end in sealed contact with the canister such that the canister outlet communicates with the bag interior and the bag interior is closed to the solute and aqueous solution thereof with the remainder of the bag spaced from and generally unsupported by the canister wall.
Abstract:
According to the proposed process for preparing oxygenated cocktail, dispersed oxygen is continuously introduced into a continuously supplied thin (not in excess of 5 mm) layer of a foam-forming food liquid over the entire volume of said liquid. The disclosed apparatus for effecting said process comprises a vessel with a porous member arranged therein, which divides said vessel into two sealed off portions. The lower portion permanently communicates via a branch pipe with a forced oxygen supply source, whereas the upper portion serves as a container for the foam-forming liquid for preparing oxygenated cocktail and has a pipe for the supply of said food foam-forming liquid and a pipe for discharging prepared cocktail. The foam-forming food liquid may be fruit juice, kvass, beer, whey, buttermilk, herb infusion and other biologically adequate liquid products.
Abstract:
An osmotic dispenser is described which is capable of releasing to its outside environment concentrations of active agent at an osmotically controlled rate over a prolonged period of time, and the active agent formulation of which is a solid or semisolid at storage temperatures, advantageously room temperature, and is fluid at the temperature of the prospective situs for the osmotic dispenser, typically at body temperature.
Abstract:
An osmotic dispenser is comprised of (1) a water porous housing member confining (2) a first flexible bag of relatively impervious material containing an active agent and provided with active agent dispensing head, and (3) a second bag of controlled permeability to moisture containing a solution which exhibits an osmotic pressure gradient against water. The first and second bags are disposed within the housing member such that water permeates from the external environment through the housing and migrates by osmosis into the solution contained in the second bag which increases in volume thereby generating mechanical force on the first bag, which mechanical force in turn ejects the active agent out of the apparatus.
Abstract:
An apparatus for dispersing gas in liquid mediums comprising a rigid adapter, a rigid tubular inner member secured to the adapter cooperating with a passage in said adapter to form a continuous conduit for gas, a terminal member for said rigid tubular inner member, a flexible, collapsible porous sleeve, having one permanently closed end and a peripheral dimension approximately equal to the peripheral dimension of a cross section of said tubular member, enclosing said tubular member and said terminal member and secured to the adapter to form an air chamber between the tubular member and the sleeve, said terminal member having means for passage of gas between the interior of the tubular member and the closed end of said sleeve and separate communication means connecting the closed end of said sleeve and the longitudinally extending space between the sleeve and said tubular member.