Abstract:
A method of converting C2 and/or higher alkanes to olefins by contacting a feedstock containing C2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.
Abstract:
Apparatus and methods are disclosed for uniformly mixing fluid phases entrained in a porous material. A mixer may have a vessel and at least one porous material held by the vessel. At least one actuator may be acoustically coupled with at least one wall of the vessel for generating a wave. The wave effects mixing of at least two fluids in the porous material. The actuator may be a linear motor actuated with a control signal of predetermined frequency. The actuator may have a number of actuator pairs each including respective first and second actuators at respective first and second sides of the vessel. The actuators may be hinged for reciprocal movement. The actuators may be actuated to form a compression expansion wave to effect fluid motion in the porous material.
Abstract:
A container (1) for releasing a chemical additive (7) in a fluid material selected from a lubricant or hydraulic fluid composition comprises a fluid material-impermeable casing (3) having a hollow interior and an additive composition (7) comprising at least one fluid material-soluble additive. The additive (7) is held within the container (1) by a least one fluid material-permeable element (11) provided at or near an opening (13) in the casing (1) and is effective to provide for release of additive(s) (7) into the fluid material. Methods of releasing additives (7) into fluid material are also provided.
Abstract:
A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
Abstract:
A process for producing inorganic spheres, which comprises injecting an aqueous liquid containing an inorganic compound into a laminar flow of an organic liquid which runs at a flow rate of from 0.001 to 2 m/s in a flow path through a porous membrane to form a W/O type emulsion and solidifying the aqueous liquid containing an inorganic compound in the W/O type emulsion.
Abstract translation:一种无机球体的制造方法,其特征在于,将含有无机化合物的水性液体在通过多孔膜的流路中以0.001〜2m / s的流量流入有机液体的层流中,形成 W / O型乳液,并且在W / O型乳液中固化含有无机化合物的含水液体。
Abstract:
Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: AxA′x′A″2-(x+x′)ByFey′B″2-(y+y′)O5+z where: x and x′ are greater than 0; y and y′ are greater than 0; x+x′ is equal to 2; y+y′ is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A′ is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A″ is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B″ is Co or Mg, with the exception that when B″ is Mg, A′ and A″ are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.
Abstract translation:特别适用于制备气相氧分离方法催化膜的金属氧化物,具有下式:其中:x和x'大于0; y和y'大于0; x + x'等于2; y + y'小于或等于2; z是使金属氧化物电荷中性的数字; A是选自镧系元素的元素; A'是选自Be,Mg,Ca,Sr,Ba和Ra的元素; A“是从f嵌段镧系元素Be,Mg,Ca,Sr,Ba和Ra中选出的元素; B是选自Al,Ga,In或其混合物中的元素,B“是Co或Mg,但是当B”是Mg时,A'和A“不是Mg。 金属氧化物可用于制备可由多孔金属氧化物元件上的混合金属氧化物的致密薄膜形成的致密膜。 本发明还提供了使用上述式的混合导电金属氧化物的氧气分离和缺氧气体的富氧的方法和催化反应器。
Abstract:
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Abstract:
Apparatus for creating gas-liquid interfacial contact conditions for highly efficient mass transfer between gas and liquid includes a gas-liquid contactor assembly including a hollow porous tube surrounded by an outer jacket defining a gas plenum between the jacket and the porous tube; a liquid feed assembly including a nozzle for injecting liquid into the porous tube in a spiraling flow pattern around and along the porous tube; a gas-liquid separator assembly at the first end of the porous tube including a nonporous degassing tube coaxially aligned with and connected to the porous tube, a gas outlet port coaxially aligned with the degassing tube to receive a first portion of gas flowing from the degassing tube, a first gas duct coaxially aligned with and connected to the gas outlet duct to convey the first portion of gas therefrom; and a liquid collection assembly. A second gas discharge assembly to collect and convey gas from the first end of the porous tube is also disclosed.
Abstract:
A hollow fiber contactor and process for fluid treatment having forced circulation with entry of fluid to be treated through the open ended lumen of a porous input hollow fiber having its opposite end closed and exit of treated fluid through the open ended lumen of an adjacent or nearby porous output hollow fiber having its opposite end closed. Fluid to be treated passes through the porous wall of an input hollow fiber, passes in contact with a treatment medium between the input and output hollow fibers forming treated fluid which passes through the porous wall of an output hollow fiber and exits the process. This invention provides high contact with treatment medium between the hollow fibers, especially suitable for selective sorption for gas purification or separation and for conduct of catalytic reactions.