Abstract:
A three-dimensional simulation system for generating a virtual environment involving a plurality of users and associated method are provided. The system includes a first sensor detecting a viewing direction of a first user, a computing unit configured to create a three-dimensional simulation of the virtual environment, based on data received from the at least one first sensor; for at least one second user, an immersive retrieval assembly for the virtual three-dimensional simulation created by the computing unit. The system includes, for the first user, a second sensor detecting the position of part of an actual limb of the first user. The computing unit is configured to create, in the virtual three-dimensional simulation, an avatar of the first user, comprising a virtual head and a virtual limb, reconstituted and oriented relative to one another based on data from the first sensor and the second sensor.
Abstract:
The system includes additional display means including at least one additional screen and additional graphic interface handling means of the additional screen (able to display on the additional screen, a summary window depending on the operational state of the aircraft. The summary window comprises at least one first pictogram able to be displayed on a first display window of main display means of the aircraft without being displayed on the second window of the main display means, and at least one second pictogram intended to be displayed on the second display window of the main display means without being displayed on the first window of the main display means.
Abstract:
A display system of an aircraft, including a flare guiding cue and related method are provided. The display system includes a display unit; and an assembly for generating a display on the display unit, configured to dynamically display, on the display unit, at least one horizon line, a slope scale of the aircraft relative to the horizon line, and a speed vector symbol, representative of the slope of the aircraft relative to the horizon line. The display generator is configured to display, upon approaching a landing strip, a flare guidance symbol, the position of the flare guidance symbol on the display unit depending on the topographical slope of the approached landing strip.
Abstract:
A display system of an aircraft, able to display a localization marking of a zone of location of an approach light ramp and related method are provided. The display system includes a display unit and an assembly generating a display on the display unit. The display generator is able to display, on approach to a landing strip, a localization marking of a presence zone of an approach light ramp toward the landing strip.
Abstract:
A retractable support for a screen, and aircraft cabin seat including such a support are provided. The retractable support for a screen comprises a support arm for the screen and a housing for receiving the arm in a retracted position inside the housing. The housing comprises a mechanism for deploying the arm outside the housing. The support further comprises a compartment defining a cavity for receiving the housing in a retracted position inside the compartment. The housing is mounted movably relative to the compartment between the retracted position and a free position outside the compartment.
Abstract:
The system according to the invention comprises an assembly for managing the graphic interface of a display, capable of controlling the display, on at least a first region of the display, of a peripheral area formed by a synthetic image comprising at least one synthetic surface representation of the terrain, and capable of maintaining at least one area representative of the position of a landing runway, centered on the landing runway, and at least one front area, adjacent to the center area, substantially free of any synthetic surface representation of the terrain. The management assembly includes means for dynamically defining the length (L) of the front area on the display as a function of a vertical decision position (DP) associated with a selected approach for said landing runway.
Abstract:
The system according to the invention comprises a mobile electronic device, at least one local base, arranged near a predefined location in the cabin, an assembly for pairing the mobile electronic device with the local base, and at least one piece of functional equipment for managing the cabin environment. The memory of the mobile electronic device stores at least one software application for controlling the functional equipment. The pairing system is capable of sending the mobile electronic device at least one location identification data of the local base during pairing between the mobile electronic device and the local base, the mobile electronic device being able to configure the control software application, based on the location identification data.
Abstract:
An infrastructure for hosting services in an aircraft, and related access method are provided. The infrastructure includes a plurality of onboard platforms, each platform corresponding to a functional domain of the aircraft and hosting at least one service able to be implemented in the aircraft in the functional domain in question; at least one onboard communicator communicating with a ground structure, connected to each onboard platform; and at least one access portal able to allow centralized access to services hosted by all of the onboard platforms corresponding to the different functional domains of the aircraft.
Abstract:
The method according to the invention comprise the following steps, dynamic measurement of the current geographical position of the aircraft, and its current ground speed, calculation of a first length representative of a flight phase of the aircraft, and calculation of a second length representative of a ground phase of the aircraft, calculation of the position of the stop point based on the first length, the second length and the current geographical position. The calculation of the first length comprises a phase for dynamically estimating a distance traveled by the aircraft during at least part of a flare phase of the aircraft.
Abstract:
A device including a holder and a transmitter supported by the holder is provided. The transmitter is capable of transmitting an electromagnetic signal toward the surface any transmission frequency (Fe). The device also includes a receiver for receiving a signal reflected on the surface. The device also includes a guide assembly for guiding the movement of the holder to move the transmitter and the receiver across from the surface, tangentially relative to the surface. The device also includes an extraction unit for extracting, in the signal received by the receiver, a shifted frequency component of the transmission frequency resulting from a local impedance variation of the surface. The extraction unit produces an extracted signal representative of the state of the surface from the shifted frequency component.