Abstract:
The invention notably relates to a computer-implemented method for retrieving model outcomes in the course of an event. The method comprises providing variables of a first set of observations of similar events, providing a multiplicity of models, indexing the multiplicity of models with the variables of the first set of observations, querying a model according to one or more variables, and returning, as a result of the query, a model.
Abstract:
The invention notably relates to a computer-implemented method for managing a plurality of graphic cards, a graphic card comprising one or more graphic processing units, comprising loading a scene in a Render Engine, the scene comprising at least one graphic data to be used for rendering a view of the scene; creating an abstract graphic resource for a graphic resource of the at least one graphic data, the abstract graphic resource storing an identifier of a graphic resource for at least one of graphic card; copying, on the said at least one graphic card, the said graphic resource of the at least one graphic data; providing to the Render Engine with an access to the abstract graphic resource for handling the said graphic resource.
Abstract:
Embodiments provide methods and systems for modifying a finite element mesh representation of a three-dimensional model. A method according to an embodiment defines a symmetric constraint of a finite element mesh where the finite element mesh represents a subject 3D model and the symmetric constraint comprises two asymmetric zones of the finite element mesh to be modified symmetrically. Next, corresponding finite elements between the two asymmetric zones are identified and a topological manipulation to at least one of the identified corresponding finite elements is performed. In response, the topological manipulation is performed symmetrically on the identified finite element corresponding to the at least one finite element. In such an embodiment, performing the manipulation symmetrically results in the two asymmetric zones being modified symmetrically and represents a symmetrical topological modification in the subject 3D model.
Abstract:
A computer-implemented method of drawing a polyline in a three-dimensional scene: a) draws a segment (S1) of said polyline in said three-dimensional scene, said segment having a starting point (P1) and an endpoint (P2); b) displays, in the three-dimensional scene, a graphical tool (PST) representing a set of three orthogonal planes (PLA, PLB, PLC), one of said planes being orthogonal to the segment; c) selects one of said planes; and d) draws another segment of the polyline (S2), having a starting point coinciding with the endpoint of the segment drawn in step a) and lying in the plane (PLA) selected in step c). Steps a), c) and d) are carried out based on input commands provided by a user. A computer program product, non-volatile computer-readable data-storage medium and Computer Aided Design or three-dimensional illustration authoring system carries out such a method.
Abstract:
Editing features of a history-based computer-aided design (CAD) model may be difficult and may require redesigning much of the CAD model modify features. The solutions described herein allow a design engineer to modify an existing history-based CAD model by automatically determining history-based features that need to be converted to direct-edit features, creating a body of direct-edit features from the determined features, and creating a model containing both the direct-edit feature body and remaining history-based features. Such a CAD model containing both kinds of features may be referred to as a hybrid model.
Abstract:
A computer-implemented method for designing a manufacturable garment provides a three-dimensional shape representing a garment segmented into a set of three-dimensional panels (3DP). Next the method computes for each three-dimensional panel, a corresponding flattened pattern (FP). The method defines a mesh (MF, M3D) on each of said three-dimensional panels and flattened patterns; and simulates a draping of the segmented three-dimensional shape over a three-dimensional manikin (MK) by progressively imposing a constraint that each mesh element (ME3) of said three-dimensional panels adopts dimensions (EEL) of a corresponding mesh element (MEF) of the corresponding flattened pattern while it conforms to the manikin shape. A computer program product, a non-volatile computer-readable data-storage medium and a Computer Aided Design system may carry out such a method. Also application of such a method to the manufacturing of a real garment.
Abstract:
The proposed approach includes a method and system for managing integrated circuit (IC) design information for multiple data stores. Each data store is split into sections, allowing larger data sets to be compared. Keys are assigned to objects in each data set, in order to determine if objects are added, deleted, or modified between multiple data stores, and also to determine object differences. The user may compare and merge differences between the data stores, using either a graphical or text-based approach. The proposed approach is highly efficient and accurate for large databases. The proposed approach allows the user to easily visualize differences in complex databases and to merge in desired changes easily.
Abstract:
A computer tool generates user-defined diminished reality images of a subject environment from source images. The diminished reality images display less real-world objects in the subject environment than that displayed in the source images. A 3D model of the subject environment in diminished reality is formed from the diminished reality images. The 3D model supports augmented reality user interaction with views of the subject environment diminished in reality and tidied/decluttered of user-selected objects.
Abstract:
A computer-implemented method for manipulating three-dimensional modeled objects of an assembly in a three-dimensional scene, comprising the steps of: determining at least a first set of at least one object and a second set of at least one object among said three-dimensional modeled objects of the assembly; grouping the at least one object of the first set in a first three-dimensional bounding box (BB) and the at least one object of the second set in a second three-dimensional bounding box (BB); and relatively reorganizing the bounding boxes (BB).
Abstract:
It is provided a computer-implemented method for designing a three-dimensional modeled object. The method comprises providing geometrical elements that represent the modeled object and that include a set in which the geometrical elements are a copy one of another. The method also comprises defining a graph, determining maximal sub-graphs of the graph, and identifying, within the determined sub-graphs, the set of connected components having the highest number of arcs and for which the rigid motions represented by the arcs all respect the identity criterion. Such a method improves the design of a 3D modeled object.