Abstract:
A compressor may include a shell, a terminal assembly and an electronics module. The terminal assembly may engage the shell and may include an outwardly extending conductor and a terminal fence at least partially surrounding the conductor. The electronics module may include a back plate having an opening through which the terminal fence may be received. The back plate may include an engagement feature and a spring element. The engagement feature may removably engage the terminal fence. The spring element may contact the shell and bias the back plate away from the shell.
Abstract:
A system includes a compressor. The compressor includes an orbiting scroll member having a first end plate and a first spiral wrap. A non-orbiting scroll member has a second end plate and a second spiral wrap, and the second spiral wrap forms a meshing engagement with the first spiral wrap to create a plurality of compression chambers between a suction port and a discharge port of the orbiting scroll member and the non-orbiting scroll member. A first port is in communication with a first of the plurality of compression chambers and selectively injects an injection fluid into the first of the plurality of compression chambers to increase a compressor capacity and selectively leaks a first compressed fluid from the first of the plurality of compression chambers to reduce the compressor capacity. A second port in communication with a second of the plurality of compression chambers and selectively leaking a second compressed fluid from the second of the plurality of compression chambers to reduce a compressor capacity.
Abstract:
A compressor may include a compressor body and a discharge valve assembly coupled to the compressor body. The discharge valve assembly directs discharge gas from the compressor body and between a valve plate and a valve retainer. The discharge valve assembly may include at least one reed valve assembly including a first support guide member, a second support guide member, and a reed assembly. The reed assembly may include a reed and a spring washer disposed between the first and the second support guide members.
Abstract:
A compressor may include a compression mechanism and a shell assembly. The shell assembly may include a body and first and second end caps cooperating to contain the compression mechanism within the body. The body may include first and second open ends and inner and outer surfaces extending between the first and second ends. The outer surface may include first and second threaded portions disposed near the first and second ends, respectively. The first end cap may include a side wall having a third threaded portion engaging said first threaded portion of said body. The second end cap may include a side wall having a fourth threaded portion engaging the second threaded portion of the body.
Abstract:
A compressor may include a shell, a crankshaft, a piston and a connecting rod. The shell may define a cylinder. The crankshaft is supported for rotation relative to the shell. The piston reciprocates within the cylinder in response to rotation of the crankshaft. The piston and the cylinder define a compression chamber therebetween. The connecting rod includes a first bushing rotatably coupled to the piston and a second bushing rotatably coupled to the crankshaft. The second bushing may include a driving surface contacting the crankshaft and having a recess formed therein. The recess receives an insert.
Abstract:
A compressor may include a shell, first and second scrolls, a seal assembly, a modulation control chamber, and a modulation control valve. The first scroll may include a first end plate having a biasing passage extending therethrough. The seal assembly may isolate a discharge pressure region from a suction pressure region. The seal assembly and the first scroll may define an axial biasing chamber therebetween that communicates with the axial biasing chamber and a first pocket between the first and second scrolls. The modulation control chamber may be fluidly coupled with the biasing chamber by a first passage. The modulation control valve may be fluidly coupled with the modulation control chamber by a second passage and movable between a first position allowing communication between the second passage and the suction pressure region and a second position restricting communication between the second passage and the suction pressure region.
Abstract:
Disclosed are working fluid compositions for heat transfer apparatuses, such as refrigeration systems, that include a refrigerant and an ester based lubricant. The working fluid may comprise ≦50% by weight of the ester based lubricant composition and ≧50% by weight of one or more refrigerant compounds. The ester based lubricant comprises an additive selected from the group consisting of: diaryl sulfides, arylalkyl sulfides, dialkyl sulfides, diaryl disulfides, arylalkyl disulfides, dialkyl disulfides, diaryl polysulfides, arylalkyl polysulfides, dialkyl polysulfides, dithiocarbamates, derivatives of 2-mercaptobenzothiazole, derivatives of 2,5-dimercapto-1,3,4-thiadiazole, and combinations thereof. The refrigerants may be C3-C8 hydrocarbons, trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), saturated hydrofluorocarbons, difluoromethane (HFC-32), 1,1,2,2-tetrafluoroethane (HFC-134), difluoroethane (HFC-152a), fluoroethane (HFC-161), R410A (a near-azeotropic mixture of difluoromethane (HFC-32) and pentafluoroethane (HFC-125)), 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), 1,1,1,2,3,3-hexafluoropropane (HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), hydrofluoroolefins, dimethyl ether, carbon dioxide, bis(trifluoromethyl)sulfide, and trifluoroiodomethane and combinations thereof.
Abstract:
A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode.
Abstract:
A climate-control system is provided that includes a variable-capacity compressor unit and a control module controlling the compressor unit. The compressor unit is operable in a first capacity mode and in a second capacity mode that is higher than the first capacity mode. The control module may be configured to switch the compressor unit among a shutdown state, the first capacity mode and the second capacity mode based on a demand signal and a number of times that the compressor unit has been switched into the shutdown state within a predetermined time period.
Abstract:
A difference module determines differences between an outdoor ambient temperature and an indoor temperature, determines a first average of the differences, and determines a second average of the differences. A storing module stores a first data point, the first data point including the first average and a first total run time of a heating, ventilation, and/or air conditioning (HVAC) system, and stores a second data point, the second data point including the second average and a second total run time of the HVAC system. A fitting module fits a line to the first and second data points. An envelope grading module generates a grade for an exterior envelope of a building based on a first characteristic of the line. An interior grading module generates a grade for an interior of the building based on a second characteristic of the line. A reporting module generates a displayable report for the building including the grade of the exterior envelope and the grade of the interior of the building.