Abstract:
A semiconductor device formed in a semiconductor substrate for dissipating electrostatic discharge and/or accumulated charge in an integrated circuit is provided. In one embodiment, the device comprises a semiconductor substrate; a plurality of layers of metal lines formed overlying the substrate; a plurality of via plugs through intermetal dielectric layers between the layers of metal lines and wherein the via plugs interconnect the metal lines; and a dummy pad formed over the plurality of layers of metal lines, the dummy pad having a diode connected thereto and to ground for providing a discharge path for the electrostatic discharge and/or accumulated charge.
Abstract:
An electrostatic discharge (ESD) protection structure and a method for forming the same are provided. The structure includes a substrate having a buried layer, and a first and a second high-voltage well region on the buried layer. The first and second high-voltage well regions have opposite conductivity types and physically contact each other. The structure further includes a field region extending from the first high-voltage well region into the second high-voltage well region, a first doped region in the first high-voltage well region and physically contacting the field region, and a second doped region in the second high-voltage well region and physically contacting the field region. The first and second doped regions and the first high-voltage well region form a bipolar transistor that can protect an integrated circuit from ESD.
Abstract:
An ESD protection circuit is implemented for a semiconductor device having a first circuit system operating with a first power supply voltage and a first complementary power supply voltage, and a second circuit system operating with a second power supply voltage and a second complementary power supply voltage. The ESD protection circuit includes a first diode having an anode coupled to the first power supply voltage and a cathode coupled to a first node connecting the first circuit system and the second circuit system for preventing a crosstalk of current between the first power supply voltage and the second complementary power supply voltage. A first MOS transistor module is coupled between the first node and the first complementary power supply for selectively creating a current path from the first node to the first complementary supply voltage for dissipating an ESD current during an ESD event.
Abstract:
The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
Abstract:
The present invention provides a layout structure for an electrostatic discharge (ESD) protection circuit. The layout structure includes a first MOS device area, a second MOS device area, and a doped region. The first MOS device area has at least one source/drain region of a first polarity type. The second MOS device, which is adjacent to the first MOS device area, has at least one source/drain region of the first polarity type. A doped region of a second polarity type is interposed between the source/drain region of the first MOS device and the source/drain region of the second MOS device, such that the doped region and the source/drain regions interfacing therewith forming one or more diodes for dissipating ESD charges during an ESD event.
Abstract:
A semiconductor layout structure for an electrostatic discharge (ESD) protection circuit is disclosed. The semiconductor layout structure includes a first area, in which one or more devices are constructed for functioning as a silicon controlled rectifier, and a second area, in which at least one device is constructed for functioning as a trigger source that provides a triggering current to trigger the silicon controlled rectifier for dissipating ESD charges during an ESD event. The first area and the second area are placed adjacent to one another without having a resistance area physically interposed or electrically connected therebetween, such that the triggering current received by the silicon controlled rectifier is increased during the ESD event.
Abstract:
The present invention discloses a tie-off circuit coupled between a first potential and a gate of a MOS device whose source is connected to a second potential. The tie-off circuit includes at least one resistor and at least on diode. The resistor is coupled between the gate of the MOS device and the first potential for preventing the gate of the MOS device from floating during a normal circuit operation. The diode is coupled between the gate of the MOS device and the first potential, in parallel with the resistor, for reducing a voltage difference across a gate oxide layer of the MOS device during an electrostatic discharge (ESD) event, thereby protecting the same from ESD damage.
Abstract:
A CMOS semiconductor product employs a first doped well of a first polarity and a second doped well of a second polarity opposite the first polarity, each formed laterally separated within a semiconductor substrate. The first doped well is further embedded within a third doped well of the second polarity that further separates the first doped well from the second doped well. The third doped well provides latch-up resistance for a pair of MOS transistors formed within the first doped well and the second doped well.
Abstract:
A semiconductor integrated circuit structure includes a plurality of diodes disposed in the substrate. These diodes are electrically coupled in series. At least one insertion region is disposed in the substrate between two of the diodes and a supply voltage node electrically coupled to the insertion region. Preferably, a guard ring surrounds the diodes.
Abstract:
An electrostatic discharge (ESD) protection circuit and method thereof are presented. In some embodiments, a high voltage tolerant input/output circuit comprises an ESD detection circuit, a first first-type transistor, a first second-type transistor, and a second second-type transistor. The first first-type transistor and the first second-type transistor are coupled to a pad. The ESD detection circuit determines whether ESD occurs at the pad and, if so, couples the gates of the first and second second-type transistors to the second power rail.