Abstract:
A display device includes a display panel and a fixing member fixed to the panel, the fixing member being formed of a resin material and being disposed to cover at least a portion of each surface of the display panel and increases durability of the display panel against external impact applied thereto and decreases thickness of the display device.
Abstract:
Disclosed is a light emitting display device including a seal and a method of fabricating the same. The light emitting display device includes a first substrate composed of a pixel region and a non-pixel region disposed around the pixel region; a pad portion formed in the non-pixel region to supply a signal to the pixel region; a second substrate disposed to face the first substrate; and a seal provided between the first substrate and the second substrate and disposed to surround the pixel region. Here, the seal is disposed on a first side between the pixel region and the pad portion, on a second side facing the first side, and on an outer ring of third sides contacting both ends of the first side and the second side, and the seal disposed in the outer ring of the third sides is filled up to contour lines of the first substrate and the second substrate.
Abstract:
Example embodiments relate to a display device having first and second substrates arranged opposite to each other, a semiconductor device on the first substrate, an organic light emitting element on the first substrate and an optical unit between the organic light emitting element and the second substrate. The display device may be configured to adjust angle viewing modes, e.g., a narrow angle viewing mode and a wide angle viewing mode, by selectively applying a voltage to the organic light emitting element and the optical unit.
Abstract:
An OLED and a method of fabricating the same are provided, in which, when a reflective layer pattern is formed, a thin layer for a pixel electrode is opened at an edge of an emission region to form the pixel electrode without additional photolithography and etching processes by forming an undercut under the edge of the reflective layer pattern, i.e., under the edge of the emission region by over-etching, thereby simplifying the process and increasing the yield.
Abstract:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-β (TGF-β) superfamily. TGF-β gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-β cDNA expression vectors into fibroblasts (NIH 3T3-TGF-β1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.
Abstract:
Organic light emitting diodes (OLEds) are provided. In one embodiment, an OLED includes a first electrode, a second electrode and an organic layer positioned between the first and second electrodes. The organic layer comprises an organic metal complex represented by the formula [M(L)2]a, in which L is an anionic ligand, M is a metal that can be five-coordinated or six-coordinated with L, and a is an integer ranging from 2 to 4.
Abstract:
Provided are an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the organic layer includes a layer having at least one of the compounds having at least one carbazole group, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime.
Abstract:
Disclosed is an organic light emitting diode display capable of preventing a phenomenon of Newton's rings by maintaining a constant gap between a first substrate and a second substrate, and a method for fabricating the same. The organic light emitting diode display includes a first substrate including at least of pixel selected from the group consisting of a plurality of red, blue and green subpixels; and a second substrate arranged to be overlapped with the first substrate and having black matrixes respectively formed in positions corresponding to the subpixels and interfaces of the subpixels, wherein the organic light emitting diode display has a spacer between the first substrate and the second substrate.
Abstract:
An organic electroluminescent display comprises: anode electrodes of R, G and B unit pixels formed separate from each other on a substrate; organic thin-film layers of the R, G and B unit pixels formed on the anode electrodes; and a cathode electrode formed over an entire surface of the substrate. The anode electrode of at least one unit pixel, among the R, G and B unit pixels, has a thickness different from anode electrodes of the other unit pixels. The anode electrode of each of the unit pixels comprises a first film having a high reflectivity and a second film for adjusting a work function. The second film of at least one unit pixel, among the unit pixels, has a thickness different from the second films of the other unit pixels. The second film of the R unit pixel is thicker than the second films of the other unit pixels.
Abstract:
An organic light emitting display (OLED) and a method of fabricating the same are provided. The method includes forming the OLED having upper and lower substrates that emit different colors from each other and coupling the upper and lower substrates together.