Abstract:
A manifold through which a fluid is adapted to flow. The manifold includes an elongated member at least partially defining a fluid chamber through which the fluid is adapted to flow, a longitudinal axis, and an interior surface; a fluid liner disposed within the fluid chamber and adapted to dynamically respond to pressure fluctuations within the fluid chamber as the fluid flows therethrough; and a wear indicator positioned radially between the interior surface of the elongated member and the longitudinal axis. The fluid liner is subject to wear and/or erosion due to the flow of the fluid therethrough and/or the dynamic response of the fluid liner to the pressure fluctuations within the fluid chamber. The wear indicator is adapted to indicate the degree to which the fluid liner has been subjected to the wear and/or erosion.
Abstract:
An apparatus is adapted to be coupled to a component of a system associated with a wellhead. The apparatus includes a band adapted to be coupled to the component; a buckle coupled to the band and located proximate to a first end of the band; a holder coupled to the band, wherein the holder is positioned, or is adapted to be positioned, proximate to the first end; an electronic identifying device attached to the holder and adapted to identify the component; and an identifying component coupled to the band. The identifying component visually conveys information about at least one of: the electronic identifying device, and the component to which the band is adapted to be coupled. In one embodiment, the system associated with the wellhead is a system for pumping fluid to the wellhead. In one embodiment, the electronic identifying device is, or includes, an RFID chip.
Abstract:
A skid for supporting a reciprocating pump assembly, the reciprocating pump assembly including a power end frame assembly having a pair of end plates and a plurality of middle plates disposed between the end plates. The end plates each have at least a pair of feet and the middle plates each having at least one foot. The skid includes a base and a plurality of pads extending from the base. At least a portion of the plurality of pads correspond to the end plate feet and at least another portion of the plurality of pads correspond to the at least one foot of each middle plate.
Abstract:
In one aspect, there is provided a damper control system for a reciprocating pump assembly according to which control signals are sent to electromagnets. In another aspect, there is provided a method of dampening vibrations in a pump drivetrain according to which a beginning of torque variation is detected and at least a portion of the torque variation is negated. In another aspect, signals or data associated with pump characteristics are received from sensors, torque characteristics and damper response voltages per degree of crank angle are calculated, and control signals are sent to electromagnets. In another aspect, a damper system includes a fluid chamber configured to receive a magnetorheological fluid; a flywheel disposed at least partially within the fluid chamber and adapted to be operably coupled to a fluid pump crankshaft; and a magnetic device proximate the flywheel. The magnetic device applies a variable drag force to the flywheel.
Abstract:
A valve seat at least partially formed of a ceramic material for use in a fracturing pump includes a first body and a second body. The first body is configured to be inserted into a fluid passageway of the fracturing pump. The first body has an outer diameter, D1. The second body extends radially from the first body and has an outer diameter, D2, greater than the outer diameter, D1, of the first body. The second body is at least partially formed of the ceramic material.
Abstract:
A fluid end 15 for a multiple reciprocating pump assembly 12 comprises at least three plunger bores 61 or 91 each for receiving a reciprocating plunger 35, each plunger bore having a plunger bore axis 65 or 95. Plunger bores being arranged across the fluid head to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. Fluid end 15 has suction valve bores 59 or 89, each suction valve bore receiving a suction valve 41 and having a suction valve bore axis 63 or 93. Discharge valve bores 57 or 87, each discharge valve bore receiving a discharge valve 43 and having a discharge valve bore axis 63 or 93. The axes of at least one of suction and discharge valve bores is inwardly offset in the fluid end from its respective plunger bore axis.
Abstract:
A plug valve including a valve body having an inlet port, an outlet port and a central chamber extending between the inlet port and the outlet port. The valve also includes an inlet seal segment within the central chamber and includes a bore extending therethrough and aligned with the inlet port. An outlet seal segment is disposed within the central chamber having a bore extending therethrough and aligned with the outlet port. A plug member is disposed in the central chamber and is moveable between an open position, to facilitate fluid flow through the plug valve, and a closed position, to block fluid flow through the plug valve. First and second side segments are disposed between and interlocked to the inlet and outlet seal segments to encircle the plug member. The side segments are tensioned to preload the seal segments against the plug member to prevent the flow of fluid between the seal segments and the plug member.
Abstract:
According to one aspect, data identifying a component is received, wherein the component is part of a system associated with a wellhead. A location at which the component is positioned relative to one or more other components is identified. The useful remaining operational life of the component is predicted based on at least an operational parameter specific to the location, and the operational history of the component or one or more components equivalent thereto. According to another aspect, a model representing at least a portion of a proposed system associated with a wellhead is generated, the model comprising a plurality of objects, each of which has a proposed location and represents an existing component. The useful remaining operational life for each object is predicted based on an operational parameter at the corresponding proposed location, and data associated with the respective operational history of the existing component.
Abstract:
Loops may be installed on a high pressure flow line and/or well service flow line to reduce movement of components of the flow line in the event of a rupture and/or substantial dislocation of at least a portion of the flow line. At least one restraining link having at least one flexible loop extends across at least one swivel assembly and is secured to adjoining pipes of the flow line. The at least one restraining link is secured while the swivel assembly is in an angled position. A length of the at least one restraining link is less than a horizontal length of the at least one swivel assembly while in an in-line position, preventing, or substantially preventing, the swivel assembly from moving to, or substantially towards, the in-line position. Also, at least one flexible anchor support tether may be wrapped around a coupling between tubular components of the flow line so as to create a right connection loop and a left connection loop. Right and left anchor tethers are looped through the connection loops. Opposite end portions of the anchor tethers are connected to well site equipment and/or other suitable securing sites.
Abstract:
According to one aspect, a pump assembly includes a fluid cylinder, and the fluid cylinder includes a fluid passage that defines a tapered internal shoulder of the fluid cylinder. The tapered internal shoulder defines a first frusto-conical surface. A valve controls flow of fluid through the fluid passage. The valve includes a valve seat, which includes a seat body disposed in the fluid passage, and a bore formed through the seat body and through which fluid flows. The seat body includes inlet and outlet end portions, wherein the fluid flows into the bore at the inlet end portion and flows out of the bore at the outlet end portion. The inlet end portion of the seat body defines a second frusto-conical surface. In one embodiment, the second frusto-conical surface engages the first frusto-conical surface to distribute and transfer loading.