INTERFEROMETRIC OPTICAL FIBRE SENSORS

    公开(公告)号:US20210311248A1

    公开(公告)日:2021-10-07

    申请号:US17266408

    申请日:2019-08-05

    Abstract: An interferometric optical fibre sensor comprises optical fibre defining an optical circuit configured to propagate a first optical wave via an environment in which the optical fibre can be exposed to a stimulus that modifies the first optical wave, and a second optical wave, and to combine the first optical wave and the second optical wave to create an interference signal containing information about the stimulus, wherein optical fibre propagating either or both of the first optical wave and the second optical wave comprises hollow core optical fibre configured to propagate the optical wave or waves by an antiresonant optical guidance effect.

    HOLLOW CORE PHOTONIC BANDGAP OPTICAL FIBRES AND METHODS OF FABRICATION

    公开(公告)号:US20210088717A1

    公开(公告)日:2021-03-25

    申请号:US16635200

    申请日:2018-08-01

    Abstract: A hollow core photonic bandgap optical fibre comprises: a cladding comprising capillaries in a hexagonal array and a hollow core formed by excluding a hexagonal group of nineteen capillaries from the centre of the hexagonal array. The core is inflated. A core size ratio is 1.26 or above, defined as a ratio of the core diameter to the cladding diameter normalized to the ratio of the core diameter to the cladding diameter in an undistorted hexagonal array; a first ring ratio is between 0.55 and 2.50, defined as a ratio of the length of radially aligned struts separating the capillaries of the first ring to the length of a strut in an undistorted hexagonal array; and a core node spacing is between 0.60 and 1.90, where defined as a ratio of a strut length around the core of a largest corner capillary and a strut length around the core of a smallest side capillary. The fabrication method comprises four different pressures for the core, corner capillary, side capillary and cladding.

    MICROFLUIDIC DEVICE AND METHOD FOR DETERMINING CELL ELECTRICAL BARRIER PROPERTIES

    公开(公告)号:US20210040428A1

    公开(公告)日:2021-02-11

    申请号:US16965767

    申请日:2019-01-17

    Abstract: A microfluidic device is provided for studying primary human airway cells cultured at the air-liquid interface defined in the device by a barrier between an apical and basolateral compartment provided by a porous support for growing a cell layer. Within the chip, a liquid flow channel is provided through the basolateral compartment. Primary measurement electrodes are arranged widely spaced apart in the basolateral compartment to cause a significant component of electrical current flowing between them to flow via the cell layer. Secondary measurement electrodes are also provided to make comparative measurements which are used to deduce parameters that are relevant for the equivalent circuit model use for analysing the data obtained from the primary measurement electrodes. The microfluidic device has a modular construction of substrate, spacer and sidewall piece, with the electrodes being formed on the substrate, and the substrate and spacer co-defining the flow channel.

    ERASABLE OPTICAL COUPLER
    137.
    发明申请

    公开(公告)号:US20200088943A1

    公开(公告)日:2020-03-19

    申请号:US16580298

    申请日:2019-09-24

    Abstract: The disclosure provides a method of forming an erasable optical coupler in a photonic device comprising a conventional optical waveguide formed in a crystalline wafer. The method comprises selectively implanting ions in a localized region of the wafer material adjacent to the conventional waveguide of the photonic device, to cause modification of the crystal lattice structure of, and a change in refractive index in, the ion implanted region of the wafer material to thereby form an ion implanted waveguide optically coupled to the adjacent conventional waveguide to couple light out therefrom, or in thereto. The crystalline wafer material and ion implanted waveguide are such that the crystal lattice structure or composition can be modified to adjust or remove the optical coupling with the conventional waveguide by further modification of the refractive index in the ion implanted region.

    COMPOSITIONS FOR CANCER TREATMENT AND METHODS AND USES FOR CANCER TREATMENT AND PROGNOSIS

    公开(公告)号:US20200078401A1

    公开(公告)日:2020-03-12

    申请号:US16465983

    申请日:2017-12-07

    Abstract: Global transcriptional profiling of CTLs in tumors and adjacent non-tumor tissue from treatment-naive patients with early stage lung cancer revealed molecular features associated with robustness of anti-tumor immune responses. Major differences in the transcriptional program of tumor-infiltrating CTLs were observed that are shared across tumor subtypes. Pathway analysis revealed enrichment of genes in cell cycle, T cell receptor (TCR) activation and co-stimulation pathways, indicating tumor-driven expansion of presumed tumor antigen-specific CTLs. Marked heterogeneity in the expression of molecules associated with TCR activation and immune checkpoints such as 4-1BB, PD1, TIM3, was also observed and their expression was positively correlated with the density of tumor-infiltrating CTLs. Transcripts linked to tissue-resident memory cells (TRM), such as CD 103, were enriched in tumors containing a high density of CTLs, and CTLs from CD 103high tumors displayed features of enhanced cytotoxicity, implying better anti-tumor activity. In an independent cohort of 689 lung cancer patients, patients with CD103high (TRM rich) tumors survived significantly longer. In summary, the molecular fingerprint of tumor-infiltrating CTLs at the site of primary tumor was defined and a number of novel targets identified that appear to be important in modulating the magnitude and specificity of anti-tumor immune responses in lung cancer.

    Optical (de)multiplexers
    139.
    发明授权

    公开(公告)号:US10578803B2

    公开(公告)日:2020-03-03

    申请号:US15512674

    申请日:2015-09-21

    Abstract: An optical demultiplexer/multiplexer, comprising: a multimode interference waveguide; at least one first coupling waveguide which meets the multimode interference waveguide at least one first location and a plurality of second coupling waveguides which meet the multimode interference waveguide at a plurality of second locations which are spaced in a direction of transmission in relation to the at least one first location, with the at least one first coupling waveguide and the second coupling waveguides together with the multimode interference waveguide providing a first angled multimode interferometer which operates to demultiplex a first optical signal having optical channels of a plurality of wavelengths or multiplex optical signals of a plurality of wavelengths into a first optical signal having optical channels of the plurality of wavelengths; at least one third coupling waveguide which meets the multimode interference waveguide at least one third location and a plurality of fourth coupling waveguides which meet the multimode interference waveguide at a plurality of fourth locations which are spaced in a direction of transmission in relation to the at least one third location, with the at least one third coupling waveguide and the plurality of fourth coupling waveguides together with the multimode interference waveguide providing a second angled multimode interferometer which operates to demultiplex a second optical signal having optical channels of a plurality of wavelengths or multiplex optical signals of a plurality of wavelengths into a second optical signal having optical channels of the plurality of wavelengths; whereby the demultiplexer/multiplexer provides for the demultiplexing/multiplexing of first and second optical signals having optical channels of a plurality of wavelengths. In a further embodiment the first coupling waveguide of an optical demultiplexer/multiplexer comprising a first angled multimode interferometer is stepped or tapered in order to couple a signal having a broadened spatial, or spectral, profile. In another embodiment of an optical demultiplexer/multiplexer comprising a first angled multimode interferometer a plurality of first coupling waveguides are coupled to a photonic structure which provides a plurality of output signals having substantially equal intensity and a phase difference, also in order to couple a signal or signals having a broadened spatial, or spectral, profile. In yet another embodiment of an optical demultiplexer/multiplexer comprising a first angled multimode interferometer the multimode interference waveguide includes a reflector at one end.

    Waveguide for an integrated photonic device
    140.
    发明申请

    公开(公告)号:US20200057197A1

    公开(公告)日:2020-02-20

    申请号:US15999071

    申请日:2018-08-17

    Abstract: An integrated photonic device comprising at least a first integrated photonic component supported by a substrate extending substantially in a plane of the device and optically isolating cladding facing the first integrated photonic component, the photonic device further comprising a waveguide formed by a deposited layer of group IV semiconductor material to extend on a slope in a direction out of the plane of the substrate, the waveguide arranged to, in use, couple light from/to the integrated photonic component through the optically isolating cladding.

Patent Agency Ranking