Abstract:
Data from an intraoral scan is received, the data comprising a plurality of intraoral images of a dental site. At least two intraoral images are identified that comprise a representation of at least a portion of a non-rigid object that was affixed to the dental site at a target area. Image registration is performed between the at least two intraoral images using the non-rigid object identified in the at least two intraoral images. A 3D model of the dental site is generated based on the image registration. A representation of the non-rigid object is subtracted from the 3D model based on the known properties of the non-rigid object. A surface of a portion of the dental site is interpolated where the non-rigid object was located based on a) data for other portions of the dental site and b) the surface of the base of the non-rigid object.
Abstract:
During an intraoral scan session, a processing device receives a first intraoral image of a dental site and identifies a candidate intraoral area of interest from the first intraoral image. The processing device receives a second intraoral image of the dental site and verifies the first candidate intraoral area of interest as an intraoral area of interest based on comparison of the second intraoral image to the first intraoral image. The processing device then provides an indication of the intraoral area of interest during the intraoral scan session.
Abstract:
An apparatus is described for measuring surface topography of a three-dimensional structure. In many embodiments, the apparatus is configured to focus each of a plurality of light beams to a respective fixed focal position relative to the apparatus. The apparatus measures a characteristic of each of a plurality of returned light beams that are generated by illuminating the three-dimensional structure with the light beams. The characteristic is measured for a plurality of different positions and/or orientations between the apparatus and the three-dimensional structure. Surface topography of the three-dimensional structure is determined based at least in part on the measured characteristic of the returned light beams for the plurality of different positions and/or orientations between the apparatus and the three-dimensional structure.
Abstract:
Processing logic makes a comparison between first image data and second image data of a dental arch and determines a plurality of spatial differences between a first representation of the dental arch in the first image data and a second representation of the dental arch in the second image data. The processing logic determines that a first spatial difference is attributable to scanner inaccuracy and that a second spatial difference is attributable to a clinical change to the dental arch. The processing logic generates a third representation of the dental arch that is a modified version of the second representation, wherein the first spatial difference is removed in the third representation, and wherein the third representation comprises a visual enhancement that accentuates the second spatial difference.
Abstract:
A processing device receives a first virtual 3D model and a second virtual 3D model, each comprising one or more teeth of a patient. The processing device compares the first virtual 3D model to the second virtual 3D model and determines, as a result of the comparing, a difference between the first virtual 3D model and the second virtual 3D model at a dental site comprising a tooth of the one or more teeth. The processing device determines whether the difference comprises a first type of change to the tooth that is indicative of tooth wear or a second type of change to the tooth that is indicative of tooth movement associated with orthodontic treatment. Responsive to determining that the first difference comprises the first type of change to the first tooth, the processing device generates a first indicator of the tooth wear for the tooth.
Abstract:
The present disclosure provides computing device implemented methods, computing device readable media, and systems for motion compensation in a three dimensional scan. Motion compensation can include receiving three-dimensional (3D) scans of a dentition, estimating a motion trajectory from one scan to another, and calculating a corrected scan by compensating for the motion trajectory. Estimating the motion trajectory can include one or more of: registering a scan to another scan and determining whether an amount of movement between the scans is within a registration threshold; determining an optical flow based on local motion between consecutive two-dimensional (2D) images taken during the scan, estimating and improving a motion trajectory of a point in the scan using the optical flow; and estimating an amount of motion of a 3D scanner during the scan as a rigid body transformation based on input from a position tracking device.
Abstract:
The present disclosure provides computing device implemented methods, computing device readable media, and systems for motion compensation in a three dimensional scan. Motion compensation can include receiving three-dimensional (3D) scans of a dentition, estimating a motion trajectory from one scan to another, and calculating a corrected scan by compensating for the motion trajectory. Estimating the motion trajectory can include one or more of: registering a scan to another scan and determining whether an amount of movement between the scans is within a registration threshold; determining an optical flow based on local motion between consecutive two-dimensional (2D) images taken during the scan, estimating and improving a motion trajectory of a point in the scan using the optical flow; and estimating an amount of motion of a 3D scanner during the scan as a rigid body transformation based on input from a position tracking device.
Abstract:
Embodiments for estimating a surface texture of a tooth are described herein. One method embodiment includes collecting a sequence of images utilizing multiple light conditions using an intra-oral imaging device and estimating the surface texture of the tooth based on the sequence of images.
Abstract:
An apparatus is described for measuring surface topography of a three-dimensional structure. In many embodiments, the apparatus is configured to focus each of a plurality of light beams to a respective fixed focal position relative to the apparatus. The apparatus measures a characteristic of each of a plurality of returned light beams that are generated by illuminating the three-dimensional structure with the light beams. The characteristic is measured for a plurality of different positions and/or orientations between the apparatus and the three-dimensional structure. Surface topography of the three-dimensional structure is determined based at least in part on the measured characteristic of the returned light beams for the plurality of different positions and/or orientations between the apparatus and the three-dimensional structure.
Abstract:
Embodiments for estimating a surface texture of a tooth are described herein. One method embodiment includes collecting a sequence of images utilizing multiple light conditions using an intra-oral imaging device and estimating the surface texture of the tooth based on the sequence of images.