Abstract:
A transflective liquid crystal display panel is disclosed. The liquid crystal display panel includes an array substrate and a storage capacitor disposed on the array substrate. The array substrate includes a transmitting region and a reflecting region, in which the storage capacitor is disposed on the reflecting region of the array substrate. The storage capacitor also includes a first transparent conducting layer disposed on the array substrate, a dielectric layer disposed on the first transparent conducting layer, and a reflective conducting layer disposed on the dielectric layer.
Abstract:
A backlight module for a display panel of a display device is provided. The backlight module comprises a light-emitting unit and a control unit. The light-emitting unit provides light to the display panel. When the display panel displays images in a first mode, the control unit drives the light-emitting unit to emit light of a first total brightness. When the display panel displays images in a second mode, the control unit drives the light-emitting unit to emit light of a second total brightness.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a first electrode layer, a second electrode layer, and a dielectric layer disposed between two layers. The first electrode layer has a plurality of first A electrode strings and first B electrode strings extended along a first direction. The first A electrode string and the first B electrode string respectively has a plurality of first direction electrodes. The second electrode layer has a plurality of second direction electrodes connected in series along a second direction. The first A and B electrode strings are disconnected in the first electrode layer while they are simultaneously detected for presence of signal variation.
Abstract:
A liquid crystal panel comprising a plurality of pixels arranged in a matrix. Each pixel comprises a red sub-pixel, a green sub-pixel, a blue sub-pixel, and an auxiliary sub-pixel with a transflective area.
Abstract:
A transflective liquid crystal display device implementing a color filter having various thicknesses. An insulating layer is formed on a lower substrate. A lower electrode is formed on the insulating layer, wherein the lower electrode has a transmissive portion and a reflective portion. An upper substrate opposing the lower substrate is provided, wherein a side of the upper substrate has a color filter having various thicknesses. A planarization layer is formed on the color filter, wherein the planarization layer is opposite to the lower substrate. An upper electrode is formed on the planarization layer. A liquid crystal layer is interposed between the upper and lower substrates.
Abstract:
A display panel is disclosed. The display panel includes a first substrate, a second substrate, and a pixel and a color filter disposed between the first substrate and the second substrate. The pixel including a plurality of subpixels has a transmitting region and a reflecting region. The color filter includes a plurality of colors corresponding to the subpixels respectively. The adjacent colors of the color filter overlap with each other and the width of the overlapped portion of the transmitting region is greater than that of the reflecting region.
Abstract:
A three-dimensional (3D) display system includes a liquid crystal display and a directional backlight module. The backlight module disposed behind the liquid crystal display includes a light-guide plate, a focusing layer, a left backlight source, a right backlight source, and a first V-shaped micro-grooved and a second V-shaped micro-grooved structures of the light-guide plate. The focusing layer is disposed between the light-guide plate and the liquid crystal display. The 3D display method is to instantly switch on and off the left and the right backlight sources to alternately emit the light from the left side and right side of light-guide plate. By means of the first and the second V-shaped micro-grooved structure, the light transmitted from the light-guide plate is focused by the focusing layer within a particular range of angles and passing through the liquid crystal layer for being alternately projected to form a 3D image.
Abstract:
A backlight module including a first light guide plate, a first light source, a second light guide plate, and a second light source. The first light guide plate includes a first side, a second side opposite to the first side, and a first surface with a micro-groove structure. The first light source is disposed on the first side of the first light guide plate. The second light guide plate is disposed on the first light guide plate, and includes a third side, a fourth side opposite to the third side, and a second surface with a micro-groove structure. The fourth side and the second side are located at the same side. The second light source is disposed on the fourth side of the second light guide plate.
Abstract:
A transflective liquid crystal display. A first substrate comprises a plurality of pixels, each pixel comprises a plurality of sub-pixels and each sub-pixel comprises at least one transmissive and at least one reflective regions. A second substrate is opposite to the first substrate, divided into a plurality of regions corresponding to the sub-pixels, and at least three of the regions are color regions and at least one of the regions is a fourth region. A first covering layer covers the first substrate, wherein the first covering layer in the transmissive region corresponding to the fourth region is substantially thicker than that corresponding to the three color regions, and the first covering layer in the reflective region corresponding to the fourth region has a thickness substantially equal to that corresponding to the three color regions. A liquid crystal layer is disposed between the first and second substrates.
Abstract:
A pixel structure on a display panel comprises three sub-pixels where each sub-pixel can be arranged to a first transmissive region and a second transmissive region. The first transmissive region has a first transistor along with a first photo-resistant layer as well as the second transmissive region has a second transistor along with a second photo-resistant layer. The first photo-resistant layer and the second photo-resistant layer of different thickness or area are formed on a color filter. There exists a function relation between data signals received from the first transistor and the second transistor. Using these two data signals and combining the photo-resistant layers of different thickness or area will make each sub-pixel generate new level of brightness in gray scale and increase the number of displaying colors.