Abstract:
A dual conversion receiver architecture that converts a radio frequency signal to produce a programmable intermediate frequency whose channel bandwidth and frequency can be changed using variable low-pass filtering to accommodate multiple standards for television and other wireless standards. The dual conversion receiver uses a two stage frequency translation and continual DC offset removal. The dual conversion receiver can be completely implemented on an integrated circuit with no external adjustments.
Abstract:
A network device may be operable to manage a network connection of customer premise equipment (CPE). While the CPE is operating in a normal mode of operation, the network device may communicate with the CPE utilizing one or more messages of a first type. While the CPE is operating in a low-power mode of operation, the network device may communicate with the CPE utilizing one or more messages of a second type. The network device may be operable to determine a particular program identifier to be utilized for messages the first type of message, and transmit such message(s) to the CPE. The message(s) transmitted while the CPE is in a low-power mode may comprise MPEG-TS packets having the particular program identifier. The message(s) transmitted while the CPE is not in the low-power mode may comprises MPEG-TS packets not having the particular program identifier.
Abstract:
A plurality of data lines and a plurality of bit lines may be used to write to and/or read from an array of memory cells. A switching element may select among different mappings between the plurality of data lines and the plurality of bit lines. The array may, for example, consist of N memory cells, the plurality of bit lines may consist of N bit lines, and the plurality of data lines may consist of N data lines, where N is an integer greater than 1. For a write operation in which a data block is to be written to the array, a configuration of the switching element may be controlled based, at least in part, on how sensitive the data block is to a faulty memory cell among the array of memory cells.
Abstract:
A satellite reception assembly may comprise a first module operable to demodulate a first one or more channels of a signal output by a direct broadcast satellite (DBS) low noise block downconverter (LNB). The first module may output a signal to a second module which may demodulate a second one or more channels of the signal output by the DBS LNB. The second module may be installed after the satellite reception assembly has been deployed upon a number of clients served by the satellite reception assembly reaching a threshold.
Abstract:
A filter for processing a digital TV composite signal having a video component and an audio component includes a digital video filter and a digital audio filter. The digital video filter includes a lowpass finite impulse response (FIR) filter, an up-mixer, an asymmetric filter for compensating a Nyquist slope of the video component, and a down-mixer connected in this order. The digital audio filter includes an audio down-mixer, a decimated FIR filter, an enhancing FIR filter, an interpolated FIR filter, and an audio up-mixer. These components are connected in series. Optionally, the decimating FIR filter is decimated by an integer decimation factor M, and the interpolated FIR filter is interpolated by an integer factor N. The integer M and N may have the same value.
Abstract:
One or more circuits of a satellite reception assembly may be operable to receive a satellite signal, recover content carried in the satellite signal, and broadcast a signal carrying the content for reception by one or more mobile devices. The satellite reception assembly may be mounted to the residence of a satellite subscriber. The signal carrying the content may be frequency locked to a reference signal that is available to the satellite reception assembly and to one or more other satellite reception assemblies. The reference signal may be a GNSS signal. The one or more circuits may communicate with the one or more mobile devices to provide a key to the one or more mobile devices, where the key is required for descrambling and/or decryption of the content carried in said signal.
Abstract:
A wireless communication system is enhanced to allow for low-latency channel surfing and to enable a user to quickly see the content carried over a selected channel while searching channels for desired content. The techniques for reducing the channel change latency may be implemented in a transmitter, receiver, or in a combination of transmitter and receiver. The wireless communication system is optionally a DVB-H communication system. The transmitter may generate and transmit one or more auxiliary channels, where each auxiliary channel contains reduced resolution content corresponding to one or more channels. The receiver may process the one or more auxiliary channels to present the reduced resolution content while processing the full resolution channel for display. The receiver caches portions of content from one or more non-selected channels and presents the cached content when the channel is selected while concurrently searching and processing the full resolution channel content.
Abstract:
A satellite dish assembly may comprise a reflector, feed horn, receive module, and wireless module. The reflector and feed horn may be operable to receive satellite signals. The receive module may be operable to recover content from the received satellite signals. The wireless module may be operable to communicate the content directly to a mobile device via a wireless connection between the mobile device and the system. The wireless module may be operable to communicate directly with a service provider network via a wireless connection between the satellite dish assembly and the service provider network. The communications with the service provider network may be to obtain security information for descrambling and/or decrypting the content and/or for providing billing information.
Abstract:
To compensate for roll-off while estimating a communication channel, an estimate of the channel is provided using a signal transmitted via the communication channel. The pilot tones positioned along the edges of the estimated channel are divided by the corresponding pilot tones of the received signal to generate a first number of ratios. An algorithm is thereafter applied to the first number of ratios to generate a second number of ratios associated with the non-pilot tones positioned along the edges of the estimated channel. Next, numbers that are inverse of the first and second number of ratios are applied to the pilot and non-pilot tones positioned along the edges of the estimated channel to compensate for the roll-offs in the estimated channel.
Abstract:
Methods and systems for providing a home cable network may comprise, for example, in a premises-based wired network (network), receiving by a root node network controller (NC), signals that conform to first protocols, where the signals may be received from sources external to the premises. The received signals may be bridged to conform to a second communications protocol and communicated to one or more networked devices comprising a television set top box downstream from the root node device where, for example, only signals conforming to the second communications protocol may be communicated. The first protocol signals may comprise data over cable service interface specification (DOCSIS), cable television, satellite television, fiber-to-the-home, and/or digital subscriber (DSL) signals. The second communications protocol may, for example, comprise a multimedia over cable alliance (MoCA) standard. The bridged signals may be communicated to networked devices at a frequency that is independent of the first communications protocols.