Abstract:
A method is provided for receiving a sounding reference signal (SRS) in a wireless communication system. A base station transmits downlink control information to a user equipment at a first serving cell of the plurality of serving cells. The downlink control information includes a carrier indicator and a downlink assignment. When the downlink control information includes an aperiodic SRS request that indicates a triggering of an SRS transmission, the base station receives an SRS from the user equipment at the second serving cell. If the first serving cell is a frequency division duplex (FDD) and the second serving cell is a time division duplex (TDD) cell, the downlink control information includes the aperiodic SRS request. If the first serving cell is the TDD cell and the second serving cell is the FDD cell, the downlink control information does not include the aperiodic SRS request.
Abstract:
A method is provided for reporting Channel State Information (CSI) in a wireless access system which supports carrier aggregation. A user equipment (UE) measures a first type CSI for a first component carrier (CC) of two or more downlink (DL) CCs, and measures a second type CSI for a second CC of the two or more DL CCs. The UE reports the first type CSI only, when a collision of a report of the first type CSI with a report of the second CSI type occurs in a same subframe. The first type CSI includes (1) only a Wideband Channel Quality Indicator (WB-CQI), (2) the WB-CQI and a first Precoding Matrix Indicator (PMI) or (3) the WB-CQI and a second PMI. The second type CSI includes (1) only a SubBand (SB) CQI or (2) the SB-CQI and a SB second PMI.
Abstract:
A method and an evolved Node B (eNB) for receiving Channel Status Information (CSI) in a wireless access system are discussed. The method according to an embodiment includes transmitting a Physical Downlink Shared Channel (PDSCH); and receiving CSI including a Channel Quality Indication (CQI) index associated with the PDSCH. The CQI index is selected from one of a first CQI table for supporting up to a 64 Quadrature Amplitude Modulation (QAM) scheme and a second CQI table for supporting up to a 256 QAM scheme. CQI indices 12 to 15 of the first CQI table are used for the 64 QAM scheme and CQI indices 12 to 15 of the second CQI table are used for the 256 QAM scheme. A size of each of the first and the second CQI tables is the same.
Abstract:
A disclosure of the present specification provides a power control method. The method may comprise a step of receiving an upper layer signal by a user equipment (UE) in which dual connectivity between a first cell and a second cell is configured. Here, the upper layer signal may comprise configuration information to be used for the dual connectivity. The configuration information may comprise one of a first configuration and a second configuration. The user equipment (UE) in which the dual connectivity is configured can be connected to a first cell group including the first cell and a second cell group including the second cell, respectively. Here, each cell group may belong to an individual base station (eNodeB). The method may comprise a step of performing power control with regard to an uplink transmission to one or more of the first cell and the second cell, on the basis of one of the first configuration and the second configuration.
Abstract:
A data transmission method of a terminal device according to an embodiment of the present invention may comprise the steps of: identifying a probability density function for battery consumption by time by accumulating information on a user's battery consumption pattern; identifying information on next charging time (T); identifying the battery depletion probability using the probability density function and the next charging time (T); and transmitting data if the battery depletion probability is less than a predetermined threshold value.
Abstract:
A method is provided for transmitting and receiving at least one of control information and a response signal at a user equipment (UE) in a carrier aggregation based wireless communication system. A first cell group having a primary cell (PCell) is configured. A second cell group having one or more secondary cells (SCells) is configured. A procedure of transmitting and receiving at least one of specific cell-related control information and a response signal is performed. If the first cell group and the second cell group are managed by a same base station, at least one of the control information and the response signal is transmitted and received on the first cell group or the second cell group. If the first cell group and the second cell group are managed by different base stations, at least one of the control information and the response signal is transmitted and received only on one of the first cell group or the second cell group according to control information type.
Abstract:
A method and device for supporting a hybrid automatic repeat request (HARQ) in an unlicensed band is provided. A user equipment receives first downlink control information (DCI) including uplink scheduling information. The first DCI further includes a carrier indicator field (CIF) indicating a cell to be scheduled. If the type of the cell indicated by the CIF is a licensed cell, the format of the DCI is determined as a first DCI format including a first resource allocation (RA) field used for the uplink scheduling information. If the type of the cell indicated by the CIF is an unlicensed cell, the format of the DCI is determined as a second DCI format including a second RA field used for the uplink scheduling information.
Abstract:
The present invention relates to a wireless communication system. In more detail, the present invention relates to a method for transmitting uplink control information in a wireless communication system operating as TDD, and a device for same. The method includes transmitting Hybrid Automatic Repeat request-Acknowledgement (HARQ) in a subframe n through Physical Uplink Control Channel (PUCCH), and a transmission power of the PUCCH relates to a method determined using Equation 4 or 5, and a device for same.
Abstract:
The present invention provide a method by which a terminal measures channel state information (CSI), a method by which a terminal transmits CSI, and devices for supporting the methods. A method by which a terminal feeds back CSI in a wireless access system, according to one embodiment of the present invention, can comprise the steps of: receiving an upper layer signal including a channel quality indicator (CQI) index; receiving a physical downlink control channel (PDCCH) signal including an aperiodic CSI request field; receiving a physical downlink shared channel (PDSCH) signal that is repeatedly transmitted as many time as the number indicated by the CQI index; measuring the CSI for a CSI reference resource; and feeding back the measured CSI by using a physical uplink shared channel (PUSCH) signal.
Abstract:
One disclosure of the present specification provides a method for receiving EPDCCH by an MTC device. The method comprises: a step for determining a first search space and a second search space for receiving EPDCCH on a first subframe and a second subframe, respectively, from among N-number of subframes, if a bundle of EPDCCHs in which the same EPDCCH is repeated on the N-number of subframes should be received, wherein each of the first and second search spaces is determined on the basis of the number of EPDCCH candidates, and determined by any one of a first case, a second case and a third case classified on the basis of a DCI format and whether a CP being used is a normal CP or an extended CP; and a step for decoding the EPDCCH in the second search space if the cases for determining the first search space and the second search space are the same.