摘要:
Provided is a process for purifying an organic feedstock comprising (a) distilling a raw organic feedstock comprising hydrogen fluoride, 2-chloro-1,1,1,2-tetrafluoropropane, and 2-chloro-3,3,3-trifluoropropene to produce a first distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a first bottoms stream rich in hydrogen fluoride; (b) cooling said first distillate stream to produce an intermediate composition comprising an organic layer rich in 2-chloro-1,1,1,2-tetrafluoropropane and 2-chloro-3,3,3-trifluoropropene, and an acid layer rich in hydrogen fluoride; and, optionally but preferably, (c) distilling said organic layer to produce a second distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a second bottoms stream comprising a purified organic feedstock substantially free of hydrogen fluoride.
摘要:
The invention provides an economic process for the manufacture of 1,3,3,3-tetrafluoropropene (HFC-1234ze) by a two stage process. A hydrofluorination of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) into 1-chloro-1,3,3,3-tetrafluoropropane (HCFC-244fa) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) is conducted, followed by the dehydrochlorination of HCFC-244fa and dehydrofluorination of HFC-245fa into HFC-1234ze.
摘要:
Disclosed are processes for the conversion of isomerizable halogenated C2-C6 olefins from one geometric form to a more preferred geometric form. Preferred process aspects involve converting C2-C6 olefin in a cis-form to a trans-form under conditions effective to convert at least about 50 percent, and even more preferably at least about 70 percent, of the cis-form compound to the trans-form compound. In preferred embodiments the C2-C6 olefin comprises tetrafluoropropene, with cis-1,3,3,3 tetrafluoropropene (cis-HFO-1234ze) being converted, preferably at high conversion rates and high selectivity, to trans-1,3,3,3 tetrafluoropropene (trans-HFO-1234ze). In preferred embodiments the conditions effective to achieve the desired high levels of conversion and selectivity include exposing the feed to a metal based catalyst selected from the group consisting of halogentated metal oxides, Lewis acid metal halides, zero-valent metals, and combinations of these, preferably under reaction conditions, including reaction temperature and residence time, effective to convert at least about 5% of the cis-form of the compound to other compounds and to further achieve a selectivity to the trans-form of the compound of at least about 70%.
摘要:
A process for the production of fluorinated olefins, preferably fluorinated propenes, by contacting a feed stream containing a fluorinated olefin and hydrogen with a first amount of catalyst to produce the hydrofluorocarbon, wherein a first exit stream contains unreacted fluorinated olefin and hydrogen; contacting the first exit stream with a second amount of catalyst to produce a hydrofluorocarbon, wherein the second amount of catalyst is preferably greater than the first amount of catalyst; and contacting the hydrofluorocarbon with a catalyst for dehydrohalogenation to produce a product stream of fluorinated olefin.
摘要:
A process for producing hydrofluorocarbon compounds represented by the following formula: CF3CHFCHm+1Fn wherein m is 0 or 2; n is 0 or 2; and m+n=2. The process has the step of contacting, i.e., reacting, hydrogen with a precursor compound represented by the following formula: CF3CF═CHmFn wherein m is 0 or 2; n is 0 or 2; and m+n=2. The contact is carried out in the presence of a solid catalyst and in the presence or absence of an inert gas. The catalyst is selected from the group consisting of: Fe, Co, Ni, Cu, Cr, Ru, Rh, Ag, Re, Os, Ir, Pt, Au, Sn, and any combinations thereof. For the hydrogenation of 1234yf to 254eb, Pd can also be used as catalyst in addition to the other above-referenced metals. These metals are preferably supported on a carrier such as activated carbon.
摘要:
This invention relates a process for the manufacture of the HFO trans-1,3,3,3-tetrafluoropropene (HFO trans-1234ze). More particularly, the invention pertains to a process for the manufacture of the HFO trans-1234ze by first dehydrofluorinating 1,1,1,3,3-pentafluoropropane to thereby produce a mixture of cis-1,3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene and hydrogen fluoride. Then optionally recovering hydrogen fluoride and then recovering trans-1,3,3,3-tetrafluoropropene.
摘要:
A process for the production of fluorinated olefins, preferably fluorinated propenes, by contacting a feed stream containing a fluorinated olefin and hydrogen with a first amount of catalyst to produce the hydrofluorocarbon, wherein a first exit stream contains unreacted fluorinated olefin and hydrogen; contacting the first exit stream with a second amount of catalyst to produce a hydrofluorocarbon, wherein the second amount of catalyst is preferably greater than the first amount of catalyst; and contacting the hydrofluorocarbon with a catalyst for dehydrohalogenation to produce a product stream of fluorinated olefin.
摘要:
This invention provides azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and water that are environmentally desirable for use as refrigerants, aerosol propellants, metered dose inhalers, blowing agents for polymer foam, heat transfer media, and gaseous dielectrics.
摘要:
A process for preparing a haloalkane comprising: (a) contacting a haloalkane starting material with an alkene in the presence of an effective amount of a catalyst complex under conditions effective to facilitate an addition reaction and to form a product stream comprising a haloalkane product from the addition reaction, wherein the catalyst complex has a boiling point higher than that of the haloalkane product; and (b) recovering the haloalkane product from the product stream.
摘要:
Disclosed are improved fluorination processes and fluorine-containing compositions which involve introducing to one or more fluorination process compositions a water reactive agent in an amount and under conditions effective to decrease the amount of water in that composition. The water reactive agent is preferably introduced to the fluorination reaction process at a location proximate to the site of the fluorination reaction, or upstream of the fluorination reaction, in amounts and under conditions effective to produce a relatively lower concentration of water in the composition, and preferably throughout the fluorination process.