Abstract:
A monitoring system monitors a region. When an event that needs to be presented to a user occurs in the region, the event is presented to the user. State history data associated with event detection states of one or more multi-sensor cameras is generated on the basis of a state change notification received from one or more multi-sensor cameras. A determination as to whether or not a currently occurring event should be notified to the user is made on the basis of a notification-unnecessary event table. If the event is determined as needing to be notified to the user, the event is presented on a presentation unit. The user is allowed to input, via a user input unit, an evaluation on the presented event. Further event detection is performed based on the evaluation made by the user.
Abstract:
An object detecting apparatus and method accurately detect an event while reducing power consumption. A photosensor is used to detect an object entering a monitoring region, and a microwave sensor is used to detect the object, which enters another monitoring region. State data representing the state of the object is generated based on detection information obtained by both sensors.
Abstract:
A memory apparatus for use with a digital picture signal. The apparatus may comprise a first signal processor for receiving an input digital picture signal and for performing a hierarchical encoding process thereon so as to form hierarchical encoded picture data, a memory for storing the hierarchical encoded picture data from the first signal processor, and a second processor for receiving the hierarchical encoded picture data from the memory and for decoding the received hierarchical encoded picture data in accordance with a hierarchical decoding process to restore the input digital picture signal. The first signal processor, the memory and the second processor being disposed on a common semiconductor substrate.
Abstract:
The invention relates to a coding apparatus for embedding second data into first data without deteriorating the first data and a decoding apparatus for decoding coded data into original first data and second data without deteriorating those data. The invention provides a coding apparatus which has a memory for storing at least partial data of first data, and embeds second data into the first data by rearranging, according to the second data, the at least partial data of the first data that is stored in the memory. The invention also provides a coding apparatus for decoding coded data in which second data is embedded and at least partial data of the coded data has been subjected to rearrangement by using one of a plurality of rearrangement patterns. The decoding apparatus calculates correlation between adjacent data for each rearrangement pattern, and decodes the original first data and the second data according to a rearrangement pattern that is determined based on the correlation.
Abstract:
An image processing apparatus and an image processing method capable of performing matching processing with a small amount of calculation and highly accurately detecting a motion vector, etc., provided with a first feature extraction portion 13 for extracting a feature and spatial coordinates of a focused pixel from information of a current frame; a second feature extraction portion 14 for extracting from information of a reference frame a feature, a focused pixel, spatial coordinates of the focused pixel, spatial coordinates of vicinity region of the focused pixel, and distance information of the focused pixel with respect to the spatial coordinates; a database creation portion 15 for creating a database indicating relative relationship of the feature, the focused pixel, the spatial coordinates in the vicinity of the focused pixel and the distance information of the focused pixel with respect to the spatial coordinates; and a motion vector detection portion 16 for obtaining spatial coordinates of a shifted position by calculating by searching distance information linked to the feature from the database based on the feature extracted by the first feature extraction portion 15.
Abstract:
Conventionally, to code a digitized image signal, a corresponding quantity of information is allocated to an edge part for carrying out coding, and therefore reduction in the quantity of information is limited, deteriorating the coding efficiency. Thus, an evaluation section of an encoder evaluates the characteristics (strength of correlation between pixels) of an image using a predetermined evaluation function, and decides a transmission pixel in accordance with the characteristics, consequently deciding a random scan order. A differential coding section differentially codes the image on the basis of the scan order decided by the evaluation section. A multiplexing section multiplexes the differential coding output from the differential coding section.
Abstract:
A data processing apparatus for embedding second digital data in first digital data comprises: bit-swap means for bit-swapping target data comprising a predetermined number of bits within the first digital data; predicting means for outputting a prediction value which predicts a value corresponding to the target data from marginal data surrounding the target data; sorting means for sorting target data subjected to the bit-swapping according to the prediction margin of error value between a prediction value output by the predicting means and respective values corresponding to target data subjected to the bit-swapping; correction code output means for outputting correction code according to target data subjected to the bit-swapping that has been sorted by the sorting means; and embedded data output means for outputting, as embedded data, one of the target data subjected to the bit-swapping that has been sorted by the sorting means, according to the second digital data.
Abstract:
An image of lower spatial resolution is converted into an image of higher spatial resolution efficiently and highly accurately. For such conversion, pixel data is expressed by vectors in a color space of R, G, B, and not only an R component of low resolution but also R, G, B components are used to predict an R component of higher resolution.
Abstract:
In each conversion blocks 10, 20 and 30, pixels adjacent to a subject pixel data are selected in the class tap construction section from SD signals, the detection of level distribution pattern of the pixel data is performed in the class categorization section and a class is determined based on the detected pattern. The pixel data of the subject pixel is generated by reading the prediction coefficient corresponding to classes from the prediction coefficient memory and performing prediction operation in the sum of products operation section using pixel data of the selected pixel selected by the prediction tap construction section and the prediction tap selection section and the read prediction coefficient. According to the selection of the switching sections 41 and 42, a HD signal having a high resolution is obtained and a signal whose tone level of a SD signal is corrected is obtained.
Abstract:
An interlaced input picture signal having a field frequency of 50 Hz is supplied. A class detecting circuit detects a class corresponding to a pattern of a level distribution of input pixels in the vicinity of an output pixel to be generated. A predictive coefficient set corresponding to the class is read from a predictive coefficient memory. Sum-of-product calculating circuits calculate data of an output picture signal using a linear estimating expression of predictive taps (pixels of an input picture signal) and predictive coefficient sets. The sum-of-product calculating circuits output pixel values M and S of an output picture signal having a field frequency of 50 Hz. The pixel values M and S that are output from the sum-of-product calculating circuits are converted into a signal having a frequency of 60 Hz by respective field memories. A selector alternately selects outputs of the field memories and generates an output picture signal (having a field frequency of 60 Hz).