Abstract:
A light source, for example a light emitting diode, can emit light and have an associated optical axis. The source can be deployed in applications where it is desirable to have illumination biased laterally relative to the optical axis, such as in a street luminaire where directing light towards a street is beneficial. The source can be coupled to an optic that comprises an inner surface facing the source and an outer surface that is opposite the inner surface. The inner surface can comprise a refractive surface that receives light headed away from the optical axis of the light source, for example opposite the street. The refractive surface can form the received light into a beam. The outer surface of the optic can reflect the beam back across the optical axis, for example so that light headed away from the street is redirected towards the street.
Abstract:
A light module includes one or more LEDs coupled to a circuit board, a lens disposed over at least one LED, and an adhesive layer disposed between each LED and the lens. A flange extends from at least one side of the lens. The adhesive layer fixes the lens in an optical alignment over the corresponding LED. The adhesive layer includes at least one of a non-permeable layer with an adhesive material on the top and bottom surfaces, a gas-permeable layer with an adhesive material on the top and bottom surfaces, a deposited material, and an over mold material. An alignment tool including one or more optical recesses and one or more alignment features is used in the assembly of at least one of an optical assembly and a light module that includes the optical assembly. The alignment tool facilitates precise alignment of the lenses over the LEDs.
Abstract:
A worklight includes a center core comprising an inner cavity, a first panel coupled to the center core, in which the first panel comprises at least one first LED module, and a second panel coupled to the center core opposite the first panel, in which the second panel comprises at least one second LED module. The worklight further includes a hanger comprising a core guide rod and an outer molding. The core guide rod comprises a shaft portion extending within the inner cavity at a distal end and a hook portion bent at an approximately 90° angle to the shaft portion. The hook portion is disposed within the outer molding, and the outer molding comprises a plurality of detents on a bottom surface. The plurality of detents are configured to hang the worklight in a plurality of angles.
Abstract:
Power management controls for electrical appliances and devices include a supercapacitor and processor based controls for automatically disconnecting the appliance or device from a main power supply when not in active use. The control may include a micropower controller that enters a very lower power sleep mode and may wake up for limited times to detect and respond to various states of the appliance and the supercapacitor by connecting or disconnecting the appliance and a main power supply, all while drawing effectively zero power from the main power supply. The control may be interrupted when the appliance is switched on for active use.
Abstract:
A multi-phase control system having multi-phase operation with single phase control includes a main control module, a lineman module, and an add-on lineman module. The main control module and the lineman module control, automatically or manually, the first phase and first phase tap changer of a multi-phase system. The add-on lineman module and the main control module control, automatically or manually, additional phases of the multi-phase system. In certain example embodiments, the multi-phase control system detects when a line voltage of an additional phase is de-energized and allows the tap changer of the additional phase to be powered by a line voltage of the first phase. In certain example embodiments, the tap changer of a de-energized phase is powered by an external power supply.
Abstract:
An apparatus is provided for securing to and collecting power from an electrical conductor including a wire clamp that clamps to and secures the apparatus to the electrical conductor, a current transformer (“CT”) that clamps to the electrical conductor and collects power from the electrical conductor, and a housing including a cavity that encloses circuitry associated with the apparatus. According to various aspects, the circuitry may include one or more sensors and wireless communications circuitry, and the CT may include a core and an electrical winding that receives an induced current from magnetic flux generated according to alternating current present on the electrical conductor.
Abstract:
Fuse holders having a fuse clip assembly configured to support resilient fuse clip arms when subjected to a compression force and also configured to support the resilient fuse clip arms when subject to an expansion force. The bias element is movable relative to the fuse clip arms between first and second positions and prevents deformation of the fuse clip arms.
Abstract:
A mounting system for a light source. The mounting system can include a first portion having a light source coupling feature and a first vertical adjustment feature, where the first vertical adjustment feature includes first fastening features. The mounting system can also include a second portion mechanically coupled to the first portion, where the second portion includes a second vertical adjustment feature having second fastening features, where the second fastening features are mechanically coupled to the first fastening features. The mounting system can further include a horizontal adjustment feature disposed at a bottom end of the second portion and mechanically coupled to the second portion. The mounting system can also include a mounting feature mechanically coupled to the horizontal adjustment feature and configured to mechanically couple to a mounting device. The mounting system can further include a guarding device disposed on a top end of the second portion.