Abstract:
A cranial window with an accessing port for medical research includes a sheet-shaped member configured to be installed as a cranial window on an outer brain skin of an animal subject through an opening in a skull, the sheet-shaped member having an optically transparent window therein or in entirety thereof to allow optical imaging into a brain of the animal subject; and an access port in the sheet-shaped member for allowing sterile insertion and removal of an accessing member having a sharp tip, the access port being configured to be self-sealing when the accessing member is removed.
Abstract:
The present invention involves retrieving edges that do not constitute a designated network model which is a network model designated by a user and are linked to nodes that constitute the designated network model, displaying retrieval results that include the retrieved edges and network model IDs corresponding to the edges in a selectable manner, and generating an integrated network model in which, when the retrieval results are selected by the user, the edges that are included in the selected retrieval results and the nodes that do not constitute the designated network model and are linked to the edges, are integrated into the designated network model.
Abstract:
Disclosed is a compound of formula I: wherein R1?, R2?, R3?, R4?, R5?, n and m are defined herein. The compound of formula I is prepared by a concise, catalytic enantioselective formal hetero-Diels-Alder (hDA) reactions of enones with isatins and is useful for making pharmaceutical composition for the treatment of proliferative diseases.
Abstract:
The present invention acquires compound structure data and candidate protein structure data on a candidate protein serving as a candidate for interaction with the compound. The present invention calculates a binding strength between the candidate protein and the compound using a docking simulation method, determines a predicted binding strength corresponding to the binding strength predicted by making a comprehensive evaluation of the binding strength, and determines a predicted protein corresponding to the candidate protein predicted to interact with the compound. The present invention calculates an interaction strength using a binding strength simulation method and determines a predicted interaction strength corresponding to the interaction strength predicted by making the comprehensive evaluation of the interaction strength.
Abstract:
The present invention relates to a solution for solving an ill-posed inverse problem in image analysis, e.g. in an electron tomography application in order to recover a structure of a sample. The solution is provided for instance as a method comprising steps of determining reliable prior knowledge about the solution, determining initial guess for the solution and determining the corresponding forward operator, deciding upon model of stochasticity, deciding on suitable regularization method, deciding on updating scheme, and producing a sequence using the set configuration.
Abstract:
The present invention sets, for each cells or each condition, a production output of the cells or the biomass based on the measured data and a variable indicating an extent of variation of the production output, calculates a variable range of the production output and the variable in case of combining the multiple cells or conditions based on the production output and the variable set, and calculates an optimum combination within the variable range by using an optimization method.