Abstract:
A method to facilitate improving electrostatic precipitator performance is provided. The method includes providing an electrostatic precipitator including an inlet, a collector chamber and an outlet, where the collector chamber includes a plurality of discharge electrodes and a plurality of collector electrodes. The method also includes defining a respective discharge electrode V-I performance for each of the plurality of discharge electrodes, identifying a particle removal characteristic for each respective discharge electrode based on the respective discharge electrode V-I performance for each of the plurality of discharge electrodes and positioning each of the plurality of discharge electrodes in the electrostatic precipitator according to the particle removal characteristic for each respective discharge electrode.
Abstract:
The present invention provides a ballast circuit and method for fabricating the same for multi-electrode corona discharge arrays. The circuit includes a conductive plastic material and at least one corona electrode protruding from the conductive plastic material. The distance between the plastic material and the corona electrode varies and controls the electrical resistance and determines the voltage breakdown of the circuit. Additionally, a particle collection surface may preferably be located within the conductive plastic material or preferably be separated from the material depending on the circuit design and configuration.
Abstract:
A discharge device in a substance modifying device is provided with a positive electrode in linear or needle form and a negative electrode in plane form. Thus, substances having a nanostructure are made to contact an active species generated through streamer discharge, which is discharge between the positive and negative electrodes, where discharge between certain points of the positive electrode and a number of points on the negative electrode occurs stably and approximately simultaneously, and is diffused from between the positive and negative electrodes, so that the nanostructure is eliminated. The nanostructure is eliminated in this manner, and thus, the bioinvasive response due to the nanostructure of substances is reduced.
Abstract:
An air particle precipitator and a method of air filtration include a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further includes an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further include a metal layer over the carbon nanotube.
Abstract:
An electrostatic precipitator includes an inertial gas-contaminant impactor separator providing two stage separation and reducing contaminant collection load on the collector electrode at the corona discharge zone to reduce contaminant build-up thereon and extend service intervals for cleaning or replacement thereof.
Abstract:
An apparatus for maintaining the freshness of foods is provided. The apparatus comprises first and second electrodes spaced oppositely to a predetermined distance, a voltage generator unit applying voltage between the first electrode and the second electrode, heat transfer means connected to the first electrode or the second electrode to absorb heat from the space between the first electrode and the second electrode, and a temperature control unit controlling the heat transfer means such that the space between the first electrode and the second electrode is of predetermined temperature, whereby the heat transfer means is connected to the electrode for voltage application, so that both the application of electric field and the temperature regulation are advantageously obtained using a single electrode without installing a separate device for temperature regulation.
Abstract:
A surface discharge type air cleaning device comprises an insulating dielectric body formed in the shape of a sheet, a discharge electrode having a pattern part of a predetermined area formed on the upper surface of the insulating dielectric body and at least one non-pattern part disposed in the pattern part and a ground electrode formed at the lower surface of the insulating dielectric body. The discharge electrode and the ground electrode have a plurality of pointed ends protruded therefrom, respectively. The pointed ends of the discharge electrode and the pointed ends of the ground electrode are disposed at the upper and lower surfaces of the insulating dielectric body, respectively, such that the pointed ends of the discharge electrode and the pointed ends of the ground electrode correspond to each other. Generation of negative ions and hydroxyl radicals is increased while generation of ozone is decreased, and therefore, air cleaning efficiency is improved.
Abstract:
An air particle precipitator and a method of air filtration comprise a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further comprises an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further comprise a metal layer over the carbon nanotube.
Abstract:
The invention is a discharge electrode in an electrostatic precipitator having a power supply connected to at least one collection electrode and a flow of gas across the collection electrode. The discharge electrode has a plurality of conductive fibers electrically connected to the power supply and fiber tips exposed to the flow of gas. The fiber tips preferably extend from a composite in which the fibers reinforce a matrix material, but alternatively can be a large number of filaments extending from a composite rod.
Abstract:
A device for remediation of gaseous or aerosol streams includes an elongated duct, at least one high potential electrode and at least one low potential electrode. The elongated duct defines a bore through which axially flows a gaseous or aerosol stream which is treated by the device to remove pollutants or particulates therefrom. A shaft rotatable within the bore of the duct includes a plurality of pins extending radially therefrom, the shaft and the pins constituting the high potential electrode. The duct may similarly include a plurality of pins extending radially into the interior bore of the duct, whereby the duct and the pins constitute the low potential electrode. The shaft is rotated by a motor relative to the duct, or the duct and shaft may be rotated together by the motor. The high and low potential electrodes are connected to a high voltage power source to effect a corona discharge between the high and low potential electrodes.