Abstract:
A system and method assists the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by an image analyzing computer, which generates codes that serve to identify obstacles. A decision computer mounted in the controlled vehicle receives such code signals along with code signals generated by the speedometer or one or more sensors sensing steering mechanism operation and generates control signals. Such code signals may be displayed, and a synthetic speech or special sound generating and warning means used, to warn the driver of the vehicle of approaching and existing hazards. The system may also use the control signals, particularly through application of fuzzy logic, to control the operation of the brakes and steering mechanism of the vehicle to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles or obstacles.
Abstract:
A system and method for controlling onboard equipments, which can make a driver certainly understand operations of alarms corresponding to various functions of a vehicle, and which can make the functions of the vehicle give full effects. When drive guide data corresponding to a set vehicle condition and simulated vehicle condition data concerning the set vehicle condition are stored in a memory (700), and a navigation device (400) plays the drive guide data stored in the memory (700), a system control unit (100) makes a vehicle condition advise unit (200) warn a driver of the set vehicle condition by a simulation on the basis of the simulated vehicle condition data. Accordingly, the driver can know an alarm operation of the vehicle condition advise unit corresponding to the set vehicle condition by the simulation.
Abstract:
Whether a driver is driving intentionally is determined rapidly and accurately when steering control is performed such that a vehicle travels along recognized travel partitioning lines. A torque value deviation absolute value is calculated using the absolute value of a difference between the torque value from the previous processing and the torque value from the current processing, and is stored in a ring buffer. A torque value deviation sum value is calculated by adding all the torque value deviation absolute values stored in the ring buffer, and when a state in which the torque value deviation sum value is equal to or less than a predetermined driving intention determination threshold continues for a predetermined first threshold time (for example, several seconds; e.g. 5 seconds) or longer, it is determined that there is a decrease in the driving intention.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
A warning system for a vehicle comprises a pair of stereoscopic cameras, image recognizing means for processing images, two warning devices disposed on the left and right side of a driver, the deviation judging means for judging a possibility of deviation from the lane where the vehicle runs or a possibility of collision to obstacles and warning control means for determining the warning device to be operated. When the vehicle has a possibility of deviation from the lane or a possibility of collision to obstacles, either left or right side of the warning device inform the driver of the possibility of deviation or collision, whereby the driver can take a quick action for avoiding hazard. Further, when the vehicle runs on a narrow load, the driver can know an inability of passing through the road by the left and right warning devices operated simultaneously.
Abstract:
An off-lane alarm apparatus quantizes an image signal provided from a line camera mounted on a car roof is into a corresponding binary image by an image processing device to detect a lane on a road surface, so that an alarm is generated when an off-lane state of the car from the lane is detected. After mounting a line camera on a car, markers preset at predetermined positions outside of the car are shot and preliminarily stored as binary image signals and the positional information is used as car side positional information for alarm determinations.
Abstract:
An alarm system is used in conjunction with a land motor vehicle to warn a driver that he is either too close to a roadway edge or is approaching that edge too rapidly. The alarm system uses material in a line marking the edge of the roadway that generates nuclear particles, and includes a detector system that activates a visual alarm if the vehicle is merely drifting towards the roadway edge and activates an audible alarm if the vehicle approaches the edge so rapidly or is so close to the edge as to require a sharp swerving action by the driver.
Abstract:
A highway line detection system which is insensitive to changes in road surface warns the driver of a motor vehicle when the vehicle is about to drift across either a center line or an edge line. A unit on each side of the vehicle directs light rays rich in infrared and red radiation downwardly toward the road surface, and includes a photoresponsive receiver responsive to the rays reflected from a painted line or mark. A valid center line or edge line has a width within a predetermined range of minimum and maximum widths and is recognized by the receiver to activate a suitable alarm, but other markings of greater or lesser width are discriminated against to prevent a false alarm. The receiver employs a series of photoconductive cells which are highly sensitive to radiation in the red and near infrared region; they are spaced horizontally on a line extending orthogonally with respect to the fore-and-aft axis of the vehicle in order to establish corresponding spaced points at which reflected rays are detected. Logic circuitry responsive to the photocell outputs activates the alarm if the combination of responding photocells is indicative of the reflection of received rays from a line on the road surface of at least said minimum width but no greater than said maximum width.