Abstract:
An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
Abstract:
In a method for determing the velocity of a flow seeded with particles reflecting light, the particles located in a light sheet (4) are illuminated with monochromatic light (5). The doppler-shifted frequency of the light reflected sideways out of the light sheet (4) by the particles is determined, and the velocity of the flow is determined from the doppler-shifted frequency. The un-shifted frequency of the monochromatic light with which the particles in the light sheet are illuminated is determined continously, and is used as a basis for the determination of the velocity of the flow from the doppler-shifted frequency.
Abstract:
A system for characterizing the pressure, temperature, movement and flow patterns of a fluid under high pressure within a test cell. The test cell is lined internally with adjustable rock facings. Pressure is measured within the test cell using a device employing pressure-distortable optical fibers. Fluid velocity, flow direction, and filter-cake buildup are measured with laser Doppler velocimetry. The flow pattern of the fluid is viewed using corresponding arrays of transmitting and receiving optical fibers. Temperature of the fluid is estimated using a combination of thermal sensors. The pressure, velocity, viewing and temperature systems are integral to the rock facings of the test cell.
Abstract:
A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.
Abstract:
A sample in a wind tunnel is radiated from a thermal energy source exteriorly of the wind tunnel. A thermal imager system, also located exteriorly of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample.
Abstract:
In a fiber-optical sensor used for measuring the Doppler broadening of scattered laser light by the principle of quasi-elastic light scattering (QELS), the scattered light originating from particles in movement, the emergence surface (7) for the laser light at the end of a single-mode or multimode light guide (3) used as an immersion probe is inclined at an angle 0
Abstract:
A method and apparatus for determining the material flow rate of bulk material, transported by belt conveyers or the like, by continuously determining the contour of the free surface of the bulk material, at right angles to the direction of transport, via continuous non-contact distant measurement using transmitter-receiver mechanisms coupled with a computer, and by computing the cross section of the bulk material. A precise and reliable measurement of the height of bulk material on the conveyer belt is achieved by using, as the transmitter-receiver mechanisms, respective laser distance-measuring devices which emit and receive a reflecting laser beam. These devices preferably operate pursuant to the pulse transit time measuring principle. The laser distance-measuring devices are accommodated in a housing.
Abstract:
In order to determine the vortex shedding frequency, from which the fluid flow rate may be calculated, an optical beam, such as produced by a laser, is passed through a fluid, transversely to a vortex street therein, and modulated in dependence on the alternate high and low velocity regions comprising the vortex street. The modulated signal is detected and "cleaned" of noise by filtering with a first (high) band-pass filter of a center frequency f.sub.c, such that the first filter output comprises an amplitude modulated signal of carrier frequency f.sub.c modulated by the vortex shedding frequency, that is the frequency of oscillation of the power spectra between the respective curves for the high and low velocity regions. The first filter output is demodulated and filtered by a second (low) band-pass filter, whose output is of a frequency comprising the vortex shedding frequency.
Abstract:
A flowmeter wherein measurements relating to fluid flowing in a pipe are obtained by transmitting a laser beam from a high power pulsed laser into the fluid through an optical window in the pipe. The beam in the fluid causes a rapid thermal expansion of the fluid which generates a pressure pulse which travels axially up and down the pipe. Continuously operating low power laser beams are projected into the fluid at points displaced from the source of the acoustic pulse and these beams are modulated when the acoustic pulse passes them. The modulation is detected to obtain first and second transit times, these transit times being utilized to compute the desired fluid flow parameters.
Abstract:
A blood leak in the dialyzer is detected by transmitting a pulsed beam of light into the dialysate flowstream at a predetermined angle of incidence between the central axis of the flowstream and the normal axis and measuring variations in reflecting light received by a photodetector arranged on the same side of the flowstream as the phototransmitter at a predetermined angle of reflection. The beam of light is interupted at a rate with a substantially equal on-time to off time ratio.