Abstract:
An anode disk element for the generation of X-rays that provides improved dissipation of heat from a focal track includes an anisotropic thermal conductivity. The anode disk element includes a focal track and at least one heat dissipating element. The anode disk element is rotatable about a rotational axis with the focal track being rotationally symmetrical to the rotational axis. The at least one heat dissipating element is configured for heat dissipation from the focal track in the direction of reduced thermal conductivity of the anode disk element.
Abstract:
In an X-ray generation apparatus of transmission type including an electron passage surrounded by and formed in an electron passage forming member, and generating an X-ray by colliding electrons having passed through the electron passage against a target, wherein the electron passage includes a secondary X-ray generation portion that generates an X-ray with collision of electrons reflected by the target against the secondary X-ray generation portion, the secondary X-ray generation portion and the target are arranged such that the X-ray generated with direct collision of the electrons against the target and the X-ray generated with the collision of the electrons reflected by the target against the secondary X-ray generation portion are both radiated to an outside, and an atomic number of a material of the electron passage forming member is larger than that of the target. X-ray generation efficiency is increased by effectively utilizing the electrons reflected by the target.
Abstract:
A transmission x-ray tube comprising an end window hermetically sealed to a flexible coupling. The flexible coupling can allow the window to shift or tilt in one direction or another direction to allow an electron beam to impinge upon one region of the window or another region of the window.A method of utilizing different regions of an x-ray tube target by tilting an x-ray tube window at an acute angle with respect to an electron beam axis to cause an electron beam to impinge on a selected region of the window and tilting the window in a different direction to allow the electron beam to impinge on a different selected region of the window.
Abstract:
An x-ray transmission device includes two surfaces in frictional contact within a low fluid pressure environment provided by a housing substantially opaque to x-rays. Materials of the two surfaces are selected such that the frictional contact generates relative charging between the surfaces. The housing includes a window substantially transparent to x-rays, and an electron target, for example a metal, is on an interior surface of the window. The electron target faces the surface that is relatively negatively charged, such that electrons accelerated from that surface, or accelerated due to the negative charge of that surface strike the electron target to generate x-rays, which may be transmitted through the window.
Abstract:
An X-ray emitter is suitable for evenly sterilizing large volumes of material in a short time, the emitter having an elongated X-ray target window and correspondingly elongated electron source mounted in a vacuum chamber. The electrons from the electron source are accelerated towards the X-ray target window, which generates X-rays directed outward from the vacuum chamber when irradiated by electrons from within the vacuum chamber. The elongated form of the electron source ensures that an evenly distributed beam of electrons, with a substantially constant linear distribution over the length of the electron source, arrives at the elongated X-ray target window such that a correspondingly even distribution of X-rays is generated from the X-ray target window. The X-ray target window includes a support substrate, and carries an X-ray target layer made of a target material such as tantalum or tungsten on its inner surface. A process for manufacturing the X-ray emitter is also described.
Abstract:
An X-ray emitting target including a diamond substrate, a first layer disposed on the diamond substrate and including a first metal, and a second layer disposed on the first layer and including a second metal whose atomic number is 42 or more and which has a thermal conductivity higher than that of the first metal. Carbide of the first metal is present at a boundary between the diamond substrate and the first layer. The target is prevented from overheating, so that output variation due to rising temperature is suppressed. Thus it is possible to emit stable and high output X-rays.
Abstract:
A rotatable anode for an X-ray tube comprises a first unit (901) for being hit by a first electron beam, and at least a second unit (902) being hit by at least a second electron beam, the second unit being electrically isolated from the first. In addition, an X-ray system comprises the anode, a main cathode for generating an electron beam, and first electrical potential, and an auxiliary cathode for influencing a second electrical potential. The main cathode deflects the electron beam to heat the auxiliary cathode. Furthermore, a device determines electrical potential by detecting a point of impact of the electron beam onto the anode and/or by detecting an X-ray spectrum of radiation starting from the anode. The electron beam hits the first unit and is deflected, wherein the deflected beam hits the second unit the point of impact. The first unit and/or second unit emit radiation.
Abstract:
A radiation generating apparatus includes a radiation generation tube including an electron emitting source having an electron emitting member, a transmission type target, a tubular backward shielding member having an electron passing hole facing the target layer at one end, located at the electron emitting source side of the transmission type target, and connected to the periphery of the base member. The radiation generating apparatus further includes a collimator having an opening for defining an angle for extracting the radiation at the opposite side of the electron emitting source side of the transmission type target, and an adjusting device connected to the collimator, and configured to vary an opening diameter of the opening, wherein the target layer has a portion separated from a connection portion of the base member and the backward shielding member at the periphery.
Abstract:
An x-ray source has multiple electron sources spaced apart from each other along a longitudinal direction that is defined as being parallel to the rotation axis of a rotating anode which is common to all of the electron sources. Each electron source emits electrons that strike the anode at respective strike points that are spatially separated from each other along the longitudinal direction, to produce respective emission centers, from which x-rays are emitted, each emission center being associated with respective ones of the x-ray sources.
Abstract:
A wavelength-classifying type X-ray diffraction device bombards a sample with characteristic X-rays generated from an X-ray generation source, and detects characteristic X-rays diffracted by the sample using an X-ray detector. The X-ray generation source is composed of several metals of different atomic number, respective metals generating several characteristic X-rays of different wavelengths. An X-ray detector is composed of several pixels for receiving X-rays and outputting pulse signals corresponding to X-ray wavelengths. Pixels are respectively furnished with classification circuits. The classification circuits classify and output pixel output signals based on each of characteristic X-ray wavelengths. X-ray intensity is detected on a per-wavelength basis in individual pixels 12. Measurement data based on different wavelength X-rays are acquired simultaneously in just one measurement. Data of diffracted X-rays of different wavelengths are acquired using the entire region of the receiving surface of a two-dimensional detector.