Abstract:
A charged particle beam irradiation apparatus includes two electromagnets arranged in series along a direction of an incident axis of a charged particle beam, for deflecting the charged particle beam in opposite directions, an energy modulator including a cylindrical member having a length and a distribution of wall thickness in a circumferential direction, a first rotational drive for rotating the cylindrical member around a rotation axis, and a detector for detecting the angular position of the cylindrical member. The energy modulator is disposed at a downstream side of the scanning electromagnets so that the deflected charged particle beam passes through the rotation axis. The apparatus includes an energy degrader for limiting energy of the charged particle beam, and a second rotational drive for rotating the scanning electromagnets and the energy modulator together around the incident axis of the charged particle beam.
Abstract:
A charged particle irradiation apparatus, which is capable of decreasing a lateral dose falloff at boundaries of irradiation field of charged particle beam, and reducing the size of the charged particle irradiation apparatus, is provided by controlling magnetic fields of quadrupole electromagnets 1-5 and deflection electromagnets 6-8 so that center of the charged particle beam passes always center of a scatterer irrespective of direction and intensity of a magnetic field generated by scanning electromagnets 50, 60.
Abstract:
A method of noncontact testing and an electron optical system includes an electron source for producing a high energy electron beam, a retarding field objective lens system for receiving and focussing the high energy electron beam to produce a focussed low energy electron beam, and a magnetic deflector for deflecting the focussed low energy electron beam to the sample, thereby to expose the sample to the low energy electron beam, and simultaneously maintaining a predetermined spot size of the beam. The retarding field objective lens system includes a device for retarding electrons in the low energy electron beam directed to the sample and for accelerating electrons, emitted by the sample upon being irradiated by the low energy electron beam.
Abstract:
A magnetic field generator for use with an insertion device, which comprises four magnet arrays, two of the arrays being provided .above the plane of an electron orbit and the other two magnet arrays being provided below the plane, said magnet arrays being provided in such a manner that they are symmetric to each other with respect to the axis of the electron orbit is described.
Abstract:
A synchrotron radiation light-source apparatus is provided in which the characteristics of synchrotron radiation generated by bending electromagnets can be made uniform, and emittance can be made smaller to increase brightness. The synchrotron radiation light-source apparatus for bending the traveling direction of an electron beam with bending electromagnets and for emitting synchrotron radiation includes deflecting electromagnets which cause a negative value (-dBy/dx) of a magnetic-field gradient gradually to increase after gradually decreasing in the traveling direction of the electron beam, that is, along the length of the bending electromagnets, so as to form a smooth recessing distribution, or to increase in a step-like manner after decreasing in a step-like manner.
Abstract:
The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.
Abstract:
Semicircular superconducting deflection magnets for deflecting electron beams along a semiconductor orbit. The magnet 1 comprises a pair of race-track shaped main coils 2 and 3 disposed symmetrically with respect to the plane of the orbit S. Each one of the main coils 2 and 3 is divided into two parts 21 and 22 or 31 and 32, the end portions 21a and 22a or 31a and 32a being displaced from each other in the direction of the orbit S, so that the magnetomotive force thereof is distributed evenly along the orbit S (FIGS. 12 through 14). According to another aspect, rectangular cancellation coils 25, 26, 35, and 36 are provided at the end portions 21a, 22a, 31a, and 32a, respectively, of the coil parts 21, 22, 31, and 32, such that the magnetomotive force of each one of the end portions is cancelled by the magnetomotive force of the adjacent parallel running side of a cancellation coil (FIGS. 21 through 23). According to still another aspect, sextupole correction coils 5 are disposed near the end portions 2a of the main coils 2 along the orbit S.
Abstract:
A deflecting electromagnet having bow-shaped pole pieces 7b,7a disposed at input and output side end surfaces 6b,6a, respectively, of a main pole piece 6 which deflects and focuses an ion beam 2 generated by an ion source 1. The respective bow-shaped pole pieces are rotatably contacted with the side end surfaces of the main pole piece. Wedge-shaped pole pieces 8b,8a, are disposed in freely slidable contact with the planar surfaces of each of the bow-shaped pole pieces, respectively. The deflecting electromagnet constructed as above can be used to easily establish and adjust the effective borders of the magnetic field to a desirable position to establish and adjust, as desired, and the angle of the faces of the deflecting electromagnet at which the ion beam is inputted and outputted.
Abstract:
A magnetic field apparatus for a particle accelerator having a particle track having curved sections contains several magnetic field-generating windings, and at least one supplemental winding provided for focusing the electrically charged particles. The system does not require pre-accelerators and relatively large particle streams should be capable of being accelerated nevertheless to relatively high energy levels. In the region of at least one of the curved sections of the particle track, an azimuthal guiding field for the particles is generated by the supplemental winding during the acceleration phase. This supplemental winding is designed as an appropriately curved electric conductor arrangement which in part encloses the particle track and which is designed in the manner of a hollow channel open toward the outside. The conductor arrangement is appropriately structured for suppressing eddy currents and carries a current transversely to the particle track.
Abstract:
An ion or electron beam is steered or focussed by a circular magnetic field produced by passing a large electrical current through a straight conducting wire, the magnetic field being co-axial with the wire. Annular beams of charged particles coaxial with the straight wire can be focussed onto a circular spot or, depending upon the entry radius of the annular beam and the magnetic field strength, can be induced to follow a looping trajectory. The effect of the steering or focussing system can be enhanced by the provision of a cylindrical conductor which is co-axial with the straight conducting wire such that the particle beam passes between the wire and the cylindrical conductor. The beam steering or focussing systems is applicable to the fields of beam current density intensification, ion implantation, ion separation and free electron lasers.