Abstract:
Aspects of a method and system for symmetric transmit and receive latencies in an energy efficient PHY are provided. In this regard, a delay introduced by a PHY of a network device for outbound traffic and a delay introduced by the PHY for inbound traffic may be controlled such that a transmit delay of the network device is equal, within a tolerance, to a receive latency of the network device. The delays may be controlled based on whether one or more energy efficiency features are enabled in the PHY. The delay introduced by the PHY for outbound traffic may be controlled based on an amount of buffered inbound traffic. The delay introduced by the PHY for inbound traffic may be controlled based on an amount of buffered outbound traffic. The delays may be controlled such that said receive latency and the transmit latency are approximately constant regardless of a mode of operation of the network device.
Abstract:
A switch arrangement is described which enable the design of a flexible front end allowing many individual and combinations of frequency band allocations to share a single antenna simultaneously. An apparatus using the switch arrangement is also described. The switch arrangement provides a single pole switch for each set of band specific filtering. The band specific filtering is connected to the pole of a respective single pole switch. The single pole switch has contact points enabling connection to of the filtering to an antenna switch both with and without a frequency selective component in the signal path. The frequency selective component allows sharing of the antenna by two or more frequency band allocations to enable simultaneous use of different radio access technologies, MIMO or Carrier Aggregation through a single antenna. When not required the frequency selective component can be switched out of the signal path to reduce insertion loss.
Abstract:
A method and apparatus for cancelling, from signals received by a radio device in a first frequency band, interference generated by the radio device in the first frequency band when the radio device transmits simultaneously radio signals on at least a second frequency band.
Abstract:
Methods and systems for DVB-C2 are disclosed and may include receiving data encoded utilizing variable encoding, variable modulation and outer codes via a physical layer matched to a desired quality of service. An error probability may be determined for said received data and retransmission of portions of said data with error probability above an error threshold may be requested. The variable modulation may include single carrier modulation, orthogonal frequency division modulation, synchronous code division multiple access, and/or from 256 QAM to 2048 QAM or greater. The variable encoding may include forward error correction code, which may include low density parity check code.
Abstract:
Frequency domain sample adaptive offset (SAO). Video processing of a first signal operates to generate a second video signal such that at least one characteristic of a first portion of video information of the first video signal is replicated in generating a second portion of video information, such that the first portion of video information and the second portion of video information undergo combination to generate the second video signal. Such use of the first video signal may involve replication and scaling of the first video information to generate the second portion of video information. One possible characteristic of the first portion of video information may correspond to an energy profile as a function of frequency. One or more portions of the first video signal may be employed to generate different respective portions of the second signal. Such video processing operations may be performed on a block by block basis.
Abstract:
Systems and methods are provided to use of out-of-band (OOB) channels for the transport of network-synchronization signals and network control information. These OOB channels transport synchronization and control channels over low-frequency bands outside of the frequency bands used for the data channels. Locating expensive network-synchronization functions in the optical network unit (ONU) and sharing the derived synchronization signals among multiple downstream customer premises equipment (CPE) devices results in cost savings and provides a means for maintaining a continuous, end-to-end synchronization reference, even during periods when the data channels on the copper network segment are in an energy-efficiency mode (e.g., a low-power and/or sleep mode).
Abstract:
Certain aspects of a method and system for achieving space and time diversity gain are disclosed. Aspects of one method may include modifying a generalization code of at least one pilot channel, to measure signal strengths for each of a plurality of received multipath signals. A portion of the plurality of received multipath signals may be combined based on the measured signal strengths. The signal strengths of the plurality of received multipath signals may be measured on a primary pilot channel by assigning its generalization code to zero. The signal strengths of the plurality of received multipath signals on a secondary pilot channel may measured by assigning its generalization code to a non-zero value.
Abstract:
A transceiver or RF front end employing a transformer with a low loss transmit/receive (T/R) switch circuit in the ground path. In various embodiments, differential outputs of a power amplifier are coupled to the first winding of the transformer, while the input of a low noise amplifier is coupled to the second side of the transformer via a matching inductor. The T/R switch circuit, which may be a thin oxide CMOS transistor, is coupled between the second side of the transformer and ground. In operation, the T/R switch circuit may be enabled during transmit mode operations of the power amplifier, such that a low impedance path to ground is provided at the input of the low noise amplifier, thereby protecting it from high voltage swings generated by the power amplifier.
Abstract:
A wireless power interface includes a plurality of coils and a control module. At least two of the plurality of coils has a different orientation with respect to at least two axes of a multi-dimensional axis system. The control module is configured to enable at least one of the plurality of coils based on electro-magnetic coupling by at least one of the plurality of coils with a coil of a wireless power device.
Abstract:
A broadband gateway, which enables communication with a plurality of devices, handles at least one physical layer connection to at least one corresponding network access service provider. The broadband gateway may operate as a home gateway to negotiate with one or more visited gateways, a common authorized service area or domain (ASD) for providing services to the visited gateways. The home gateway may establish one or more corresponding communication links with the visited gateways based on the negotiated common ASD. The home gateway communicates corresponding content for the services to the visited gateways via the established corresponding communication links. The home gateway communicates information about gateway functionalities required for the services to the visited gateways. The visited gateways may port gateway functionalities forwarded by the home gateway, or may perform gateway functionality conversion to support the services, which may be acquired via the home gateway and/or the visited gateways from networks.