Abstract:
A method for preparing TEM sample, comprising the following steps: providing a sample with two pits and a failure region between the two pits, the failure region comprising a semiconductor device; milling the first surface of the failure region, till the cross section of the semiconductor device is exposed; etching the first surface of the failure region; cleaning the sample; milling the second surface of the failure region, till the failure region can be passed by electron beam. A sample can be prepared for a high resolution TEM through above steps. When the sample is observed, it is easy to distinguish the lightly doped drain, source/drain regions from the silicon substrate and observe the pattern and defects in the lightly doped drain, source/drain regions clearly; in addition, it is easy to distinguish the BPSG from the non-doped silicon dioxide in the failure region.
Abstract:
The present invention provides a power saw, which comprises a base, a support arm mounted on the base, a cutting unit supported by the support arm and pivotable about a first axis to a first angle position, and a table disposed on the base for supporting a workpiece to be cut. The cutting unit comprises a cutting head which contains a cutting element, a gear box, and a motor. The gear box is positioned between and connects the cutting head and the motor. The power saw further comprises an angle indication device which comprises a first angle indication light, a control device connected to the first angle indication light, and a power source supplying power to the first angle indication light. The first angle indication light, the control device and the power source are electrically connected when the cutting unit is at the first angle position.
Abstract:
A device comprising an array of sensors and a multiplicity of bus lines, each sensor being electrically connected to a respective bus line and comprising a respective multiplicity of groups of micromachined sensor cells, the sensor cell groups of a particular sensor being electrically coupled to each other via the bus line to which that sensor is connected, each sensor cell group comprising a respective multiplicity of micromachined sensor cells that are electrically interconnected to each other and not switchably disconnectable from each other, the device further comprising means for isolating any one of the sensor cell groups from its associated bus line and in response to any one of the micromachined sensor cells of that sensor cell group being short-circuited to ground. In one implementation, the isolating means comprise a multiplicity of fuses. In another implementation, the isolating means comprise a multiplicity of short circuit protection modules, each module comprising a current sensor circuit and an electrical isolation switch.
Abstract:
A tunable optical filter comprises an optical switch having a single first optical port and a plurality of second optical ports; a plurality of band pass filters, each one of the band pass filters optically coupled to a respective second optical port; and an optical multiplexer having a plurality of inputs and a single output, each input optically coupled to a respective band pass filter, wherein the optical switch delivers a plurality of optical channels to a selected one of the band pass filters, the selected band pass filter transmitting a single selected optical channel to an input of the optical multiplexer. Alternatively, the multiplexer may be substituted by a second optical switch. Optionally, the band pass filters may reflect other channels back to the plurality of second optical ports.
Abstract:
In a field effect transistor (FET), and a method of fabricating the same, the FET includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a plurality of wire channels electrically connecting the source and drain regions, the plurality of wire channels being arranged in two columns and at least two rows, and a gate dielectric layer surrounding each of the plurality of wire channels and a gate electrode surrounding the gate dielectric layer and each of the plurality of wire channels.
Abstract:
A lens includes a lens body having a bottom surface, a reflective surface, and a refractive surface. The bottom surface is to be disposed proximate to a light-emitting component. The reflective surface is disposed opposite to the bottom surface along a lens axis, and reflects a first portion of the light provided by the light-emitting component that is incident thereon toward the refractive surface. The refractive surface extends from an edge of the reflective surface to the bottom surface, and refracts a second portion of the light provided by the light-emitting component that is incident thereon as well as the first portion of the light reflected by the reflective surface theretoward in sideward directions relative to the light-emitting component. The lens body has cross-sections transverse to the lens axis, sizes of which increase gradually from a junction of the reflective surface and the refractive surface toward the bottom surface.
Abstract:
Numerous embodiments of a method for depositing a layer of nano-crystal silicon on a substrate. In one embodiment of the present invention, a substrate is placed in a single wafer chamber and heated to a temperature between about 300° C. to about 490° C. A silicon source is also fed into the single wafer chamber.
Abstract:
A method of determining the crystalline orientation of a crystal surface of a workpiece using Raman spectroscopy. A beam of substantially monochromatic light is directed to be incident on the crystal surface at a predetermined angle of incidence. The beam of light is substantially polarized. The workpiece is rotated relative to the beam of light about a rotation axis substantially normal to the crystal surface. A Raman shift of scattered light is measured at each of a number of rotational positions during the rotation of the workpiece. The crystalline orientation of the crystal surface is determined based on the measured Raman shifts. Data indicating the determined crystalline orientation of the crystal surface is stored.
Abstract:
A combined output driver for TMDS signals and LVDS signals. First and second output drivers output first and second differential signals to a first external input unit and a second external input unit, respectively, through a pair of signal lines according to first and second input signals. In the second output driver, a driver buffer is coupled to a first voltage and a first node respectively to generate two control signals according to the second input signals. An output unit generates the second differential signal according to the two control signals. A power supply provides a second voltage higher than the first voltage to power the driver buffer and the output unit when the first output driver outputs the first differential signal to the first external input unit.
Abstract:
The invention involves a sort of curved film projection system, including a rendering surface, a projection screen, a real scene rendering model of image system, a rendering model of projection system that renders the projection the image rendered by the rendering model of image system on the rendering surface, and projecting devices that projects the image finally rendered by the rendering model of projection system onto the projection screen through optical lens. The viewing direction and angle from observer's eyes to the rendering surface is consistent with that to the projection screen. The image system rendering model can be reversible on optical path with the projection system rendering model. The curved film projection system not only reduces the rendering cost, but also produces lifelike experience for audience.