摘要:
A device comprising an array of sensors and a multiplicity of bus lines, each sensor being electrically connected to a respective bus line and comprising a respective multiplicity of groups of micromachined sensor cells, the sensor cell groups of a particular sensor being electrically coupled to each other via the bus line to which that sensor is connected, each sensor cell group comprising a respective multiplicity of micromachined sensor cells that are electrically interconnected to each other and not switchably disconnectable from each other, the device further comprising means for isolating any one of the sensor cell groups from its associated bus line and in response to any one of the micromachined sensor cells of that sensor cell group being short-circuited to ground. In one implementation, the isolating means comprise a multiplicity of fuses. In another implementation, the isolating means comprise a multiplicity of short circuit protection modules, each module comprising a current sensor circuit and an electrical isolation switch.
摘要:
A method for making a testable sensor assembly is provided. The method includes forming a first sensor array on a first substrate having a first side and a second side, wherein the first sensor array is formed on the first side of the first substrate, coupling a first semiconductor wafer having a first side and a second side to the first sensor array, wherein the first side of the first semiconductor wafer is coupled to the first sensor array, thinning one of the second side of the first substrate or the second side of the first semiconductor wafer, and testing the first sensor array to identify operational and non-operational units in the testable sensor assembly before integration of the sensor assembly with interface electronics.
摘要:
A method for making a testable sensor assembly is provided. The method includes forming a first sensor array on a first substrate having a first side and a second side, wherein the first sensor array is formed on the first side of the first substrate, coupling a first semiconductor wafer having a first side and a second side to the first sensor array, wherein the first side of the first semiconductor wafer is coupled to the first sensor array, thinning one of the second side of the first substrate or the second side of the first semiconductor wafer, and testing the first sensor array to identify operational and non-operational units in the testable sensor assembly before integration of the sensor assembly with interface electronics.
摘要:
A capacitive micromachined ultrasound transducer (cMUT) cell is presented. The cMUT cell includes a lower electrode. Furthermore, the cMUT cell includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode, wherein the diaphragm comprises one of a first epitaxial layer or a first polysilicon layer. In addition, a stress reducing material is disposed in the first epitaxial layer.
摘要:
A capacitive micromachined ultrasound transducer (cMUT) cell is presented. The cMUT cell includes a lower electrode. Furthermore, the cMUT cell includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode, wherein the diaphragm comprises one of a first epitaxial layer or a first polysilicon layer. In addition, a stress reducing material is disposed in the first epitaxial layer.
摘要:
A method for Fresnel zone imaging is provided. The method comprises identifying a plurality of constructive regions and a plurality of destructive regions in an energy transmitting device and converting the destructive regions to the constructive regions by using an apodization profile. The apodization profile comprises apodization values for each constructive region and destructive region and the apodization values comprise real numbers.
摘要:
A reconfigurable linear array of sensors (e.g., optical, thermal, pressure, ultrasonic). The reconfigurability allows the size and spacing of the sensor elements to be a function of the distance from the beam center. This feature improves performance for imaging systems having a limited channel count. The improved performance, for applications in which multiple transmit focal zones are employed, arises from the ability to adjust the aperture for a particular depth.
摘要:
The present invention relates to a method for making an integrated sensor comprising providing a sensor array fabricated on a top surface of a bulk silicon wafer having a top surface and a bottom surface, and comprising a plurality of sensors fabricated on the top surface of the bulk silicon wafer. The method further comprises coupling an SOI wafer to the top surface of the bulk silicon wafer, thinning the back surface of the bulk silicon wafer, coupling a plurality of integrated circuit die to the back surface of the bulk silicon wafer, and removing the SOI wafer from the top surface of the bulk silicon wafer.
摘要:
The reconfigurable ultrasound array disclosed herein is one that allows groups of subelements to be connected together dynamically so that the shape of the resulting element can be made to match the shape of the wave front. This can lead to improved performance and/or reduced channel count. Reconfigurability can be achieved using a switching network. A methodology and an algorithm are disclosed that allows the performance of this switching network to be improved by properly choosing the configuration of the switching network.
摘要:
A device comprising an array of sensors that are reconfigurable by means of a switching network. The sensors may be optical, thermal or pressure sensors or ultrasonic transducers. More specifically, the device comprises: a multiplicity of sensor elements; a plurality of bus lines; a set of access switches for selectively connecting a set of the sensor elements in a row to a bus line, one of the access switches being connected to a first sensor element; a multiplicity of sets of matrix switches, each of the sets of matrix switches selectively connecting a respective sensor element of the multiplicity of sensor elements to a respective set of adjacent sensor elements, one of the matrix switches being connected to the first sensor element and to a second sensor element that is not a member of the set of sensor elements; and control circuitry that controls the access switches and the matrix switches in accordance with a selected switching configuration such that the first sensor element is connected to the bus line via said one access switch, while at the same time the second sensor element is connected to said one access switch via said one matrix switch.