Abstract:
Radio frequency (RF) amplification devices and methods of amplifying RF signals are disclosed. In one embodiment, an RF amplification device includes a control circuit and a Doherty amplifier configured to amplify an RF signal. The Doherty amplifier includes a main RF amplification circuit and a peaking RF amplification circuit. The control circuit is configured to activate the peaking RF amplification circuit in response to the RF signal reaching a threshold level. In this manner, the activation of the peaking RF amplification circuit can be precisely controlled.
Abstract:
DC to DC converter circuitry includes a dual phase charge pump and at least one pair of multiplier phase circuits. The dual phase charge pump is coupled to each one of the at least one pair of multiplier circuits and adapted to receive a DC input voltage and only four control signals, and produce a stepped-up output voltage. Each one of the at least one pair of multiplier phase circuits are adapted to receive the stepped-up output voltage, a cross-coupled control signal from the other multiplier phase circuit in the pair of multiplier phase circuits, and a different one of the control signals and further multiply the stepped-up output voltage to produce a multiplied stepped-up output voltage with a magnitude that is approximately three times that of the DC input voltage or greater.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
Circuitry, which includes data memory and processing circuitry, is disclosed. The data memory is used to store look-up table (LUT)-based radio frequency (RF) power amplifier (PA) calibration data. The processing circuitry converts at least a portion of the LUT-based RF PA calibration data to provide monotonic response curve-based data. As such, a magnitude of an envelope power supply control signal is determined based on a magnitude of an RF input signal using the monotonic response curve-based data.
Abstract:
A first radio frequency (RF) power amplifier (PA) stage, a second RF PA stage, and an alpha RF switch are disclosed. The first RF PA stage provides a first RF output signal. During a first alpha mode, the alpha RF switch forwards the first RF output signal to the second RF PA stage, such that the first RF PA stage functions as a driver stage and the second RF PA stage functions as a final stage. However, during one of a group of alpha modes, the alpha RF switch forwards the first RF output signal to provide a corresponding one of a group of alpha transmit signals, such that the first RF PA stage functions as a final stage. Further, the first alpha mode is not one of the group of alpha modes.
Abstract:
The present invention provides a method and apparatus for estimating a multipath channel with sub-chip resolution. In general, secondary signals are characterized based on correlating a received signal including multipath signals, which include a main and the secondary signals, with a pseudo-random noise code. An inverse filter operates to increase a temporal resolution of results of the correlation of the received signal and the pseudo-random noise code, thereby allowing secondary multipath signals occurring within the same chip interval as another multipath signal to be detected and estimated correctly.
Abstract:
A switchable RF transmit/receive (TX/RX) multiplexer, which includes a group of RF TX bandpass filters, a group of RF TX switching elements, and a group of RF RX bandpass filters; is disclosed. The group of RF TX bandpass filters includes a first RF TX bandpass filter and a second RF TX bandpass filter, such that each of the first RF TX bandpass filter and the second RF TX bandpass filter is coupled to a first filter connection node. The group of RF TX switching elements includes a first RF TX switching element coupled between the first filter connection node and a first common connection node, which is coupled to a first RF antenna. Each of the group of RF RX bandpass filters is coupled to the first common connection node.
Abstract:
A micro-electrical-mechanical system (MEMS) guided wave device includes a plurality of electrodes arranged below a piezoelectric layer (e.g., either embedded in a slow wave propagation layer or supported by a suspended portion of the piezoelectric layer) and configured for transduction of a lateral acoustic wave in the piezoelectric layer. The piezoelectric layer permits one or more additions or modifications to be made thereto, such as trimming (thinning) of selective areas, addition of loading materials, sandwiching of piezoelectric layer regions between electrodes to yield capacitive elements or non-linear elastic convolvers, addition of sensing materials, and addition of functional layers providing mixed domain signal processing utility.
Abstract:
This disclosure relates generally to radio frequency (RF) front-end circuitry for different types of carrier aggregation, along with methods of operating the same. In one embodiment, the RF front-end circuitry includes a first diplexer, a second diplexer, first antenna selection circuitry, and second antenna selection circuitry. In order to maintain adequate isolation between high bands and low bands but provide carrier aggregation, the first antenna selection circuitry is configured to selectively couple each of a first plurality of RF ports to any one of a first low band port in the first diplexer and a second low band port in the second diplexer, while the second antenna selection circuitry is configured to selectively couple each of the second plurality of RF ports to any one of a first high band port in the first diplexer and a second high band port in the second diplexer.