Abstract:
A method is disclosed for modifying an aluminosilicate-containing inorganic solid having a predetermined ion exchange capacity and containing an extractable silica by contacting, in the absence of added organic nitrogen or organic phosphorous compound and added activating metal oxide, the porous solid with liquid water at a pH of at least 6, at a temperature of up to 370.degree. C. for about 1 to 100 hours, and recovering a crystalline solid having an ion exchange capacity greater than the starting inorganic solid.
Abstract:
The invention deals with a process for making a pyrazine from an aminoalkanol by passing it over a crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12 and a constraint index of 1 to 12 under conditions to dehydrate, dehydrogenate and cyclize it.
Abstract:
The present invention relates to siliceous zeolite catalysts produced by a method which includes selecting an amount of aluminum framework species to be retained in a zeolite catalyst product, and use of a silicon substitution treatment to replace more reactive framework species used to control aluminum framework concentration. This technique substantially preserves the selected amount of the aluminum framework species. The zeolite product obtained has high reactivity and stability.
Abstract:
This invention relates to acid catalysis of organic compound feedstock, e.g. isomerization of xylenes, over catalyst material treated in a special way for increasing the acid catalytic activity thereof. In particular, a novel catalyst activation process is followed to enhance the alpha value of high-silica zeolite catalyst by contact with an ammoniacal solution of an alkali metal aluminate under appropriate conditions of time, temperature and pH.
Abstract:
This invention relates to acid catalysis of organic compound feedstock, e.g. conversion of oxygenates to hydrocarbons, over catalyst material treated in a special way for increasing the acid catalytic activity thereof. In particular, a novel catalyst activation process is followed to enhance the alpha value of high-silica zeolite catalyst by contact with an ammoniacal solution of an alkali metal aluminate under appropriate conditions of time, temperature and pH.
Abstract:
An improved catalyst for methanol conversion having enhanced stability is obtained by extruding a zeolite having a silica-to-alumina ratio of at least 12 and a Constraint Index within the approximate range of 1 to 12 with a silica matrix and thereafter subjecting the extrudate to both steaming and acid-extraction in order to enhance the stability thereof.
Abstract:
A process is provided for converting feedstock comprising paraffins, olefins or mixtures thereof to product comprising C.sub.5 + hydrocarbons over a catalyst comprising a high silica crystalline zeolite which has been treated by steps of calcining the crystalline material, contacting the calcined material with solid aluminum fluoride, and converting the aluminum fluoride contacted material to hydrogen form.
Abstract:
A process is provided for converting feedstock aromatic compounds by alkylation, transalkylation, disproportionation and/or isomerization over a catalyst comprising a high silica crystalline zeolite which has been treated by steps of calcining the zeolite, contacting the calcined zeolite with solid aluminum fluoride, and converting the aluminum fluoride contacted zeolite to hydrogen form.
Abstract:
The ion-exchange capacity and acid catalytic activity of a ZSM-5 type zeolite are increased by treatment of a physical mixture of the zeolite and an inorganic oxide with water in the presence of an alkali metal cation.
Abstract:
A process for upgrading lower olefin to produce heavier hydrocarbons having a substantially linear molecular conformation comprising contacting olefinic feedstock under oligomerization conditions at reaction temperature and pressure favorable to formation of higher molecular weight aliphatic hydrocarbons with a shape selective medium pore acidic crystalline ferrosilicate zeolite catalyst having a major portion of zeolitic iron in tetrahedral coordination therein.