Abstract:
What is disclosed is a system and method for improving image quality of a color of interest using a cluster model in a color printing system involving the following. First, one or more image quality attributes are selected for a target color marking device. A cluster model is received which comprises a plurality of clusters with each cluster having an associated transform. The cluster model is used to estimate an image quality parameter. The image quality parameter is used to select colorant sets and thereby to improve the image quality in the marking device. Various embodiments of the use of cluster models are disclosed.
Abstract:
A system and method for generating a hierarchical LUT for implementing a color transformation within a color imaging system. In one embodiment, a coarse LUT is received which comprises a plurality of sub-cubes arrayed on a plurality of coarse levels on a structured coarse grid. Each of the sub-cubes encompasses at least one coarse LUT node. Sub-cubes in the coarse grid are identified that are bisected by a boundary surface of the gamut. Then, each of the identified coarse LUT sub-cubes are associated with fine LUT which comprises a plurality of fine LUT nodes arrayed on a plurality of fine levels on a structured fine grid. A hierarchical LUT is generated from the coarse LUT and the associated fine LUTs. Thereafter, the hierarchical LUT can be used for color transformation within a color imaging system.
Abstract:
What is disclosed is a novel system and method for identifying an individual in an IR image involves the following. Intensity values are collected at N wavelengths for each pixel in an IR video-based image. The intensity values are collected using an IR imaging system having an IR detector and an IR Illuminator. The intensity values are then used to identify pixels of human skin in the IR image. If human skin is identified in the IR image then, the human hand is identified in the IR image from the human skin to distinguish the hand from the background. Vein patterns in the hand are then located and extracted. A reference vein pattern is retrieved from a database of known vein patterns for individuals, and a comparison is made to determine a match. If a match is determined, then the individual in the captured IR image can be identified.
Abstract:
What is disclosed is a system and method for post-processing a multi-spectral image which has already been processed for pixel classification. A binary image is received which contains pixels that have been classified using a pixel classification method. Each pixel in the image has an associated intensity value and has a pixel value of 1 or 0 depending on whether the pixel has been classified as a material of interest or not. A block of size m×n is defined. Pixel values in a block are changed according to a threshold-based filtering criteria such that pixels in the same block all have the same binary value. The block is then shifted by k pixels and pixel processing repeats until all pixels have been processed. Once all blocks have been processed, contiguous pixels having the same binary value are grouped to form objects. In such a manner, pixel classification errors are reduced.
Abstract:
A methodology is disclosed to achieve adaptive illumination independent matching of out-of-gamut spot colors. In one embodiment, the methodology includes an iterative process to determine a variety device specific recipes for out-of-gamut spot colors across different illumination spectra and gamut mapping techniques, and then automatically choosing and/or recommending the optimal recipe and gamut mapping technique that provides the lowest color dispersion across a variety of illuminants under consideration.
Abstract:
What is disclosed is a system and method for generating a destination profile LUT. In a manner more fully described herein, a high resolution LUT (e.g., 100-cube LUT) is received. Regions of high curvature of the gamut of an image output device are identified. A non-parametric dynamic optimization node selection method is utilized to select a subset of nodes from the high resolution profile LUT which captures these nonlinearities. Down-sampling the high resolution LUT produces a low resolution LUT. The low resolution LUT is up-sampled to a size of the high resolution LUT to obtain a reconstructed LUT. An error is then calculated between the reconstructed LUT and high resolution LUT. The process of node selection is iteratively repeated until all the subsets of nodes are considered. A destination profile LUT is then generated from the subset of nodes with the least error.
Abstract:
What is disclosed is a novel system and method for retrieving a gamut mapping for a color device. A ray-based model is derived from a system estimation of either a seed profile or a seed device. The model is hard coded inside a run-time ICC profile creation algorithm. The runtime profile generation code can be optimized for a variety of gamut mapping scenarios. The generated profile is provided to an imaging system wherein out-of-gamut colors are mapped to the color gamut of the host device. The present method provides an accurate way to reproduce colors of images by retrieving the gamut mapping from profiles or from the color device that use destination profiles for rendering images.
Abstract:
What is disclosed is a novel system and method for xerographic Dmax control based upon measurements made on the printed paper using an inline spectrophotometer (ILS) or similar device. The disclosed method is based upon directly measuring the color to actuator sensitivity. Each of the separations is controlled independently using an actuator specific to that color separation. The present method is effective at controlling the color of the solid primaries. The fact that the vector of change is highly correlated with solid color variation seen in the field suggests that the teachings hereof effectively increase the solid color stability. Increased solid color stability increases the color stability throughout the printer gamut and the stability of the gamut boundaries, which increases the robustness of gamut mapping algorithms. Advantageously, the present method can be combined with existing ILS-based maintenance architectures.
Abstract:
The present application discloses a system, method and device for placing substantially invisible marks comprising alphanumeric characters, symbols, or bar codes, on a page using clear ink or toner, which may then be read by a spectrophotometer. Such substantially invisible marks are not viewable to the unaided eye of a human observer, do not distract a viewer, and allow the viewer to focus their attention on the printed matter and text of interest to the viewer.
Abstract:
A color management system is provided for enabling imaging of selected colors called spot colors by dynamically adjusting the normal printer gamut to achieve a color gamut extension. Developed toner mass may be increased or decreased by changing ROS laser intensity. Such adjustment can occur on a pixel-by-pixel basis for within page and within sections of the image gamut extension.